As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Twitter-based public health surveillance systems have achieved many successes. Underlying this success, much useful information has been associated with tweets such as temporal and spatial information. For fine-grained investigation of disease propagation, this information is attributed a more important role. Unlike temporal information that is always available, spatial information is less available because of privacy concerns. To extend the availability of spatial information, many geographic identification systems have been developed. However, almost no origin of the user location can be identified, even if a human reads the tweet contents. This study estimates the geographic origin of tweets with reliability using a density estimation approach. Our method reveals how the model interprets the origin of user location according to the spread of estimated density.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.