As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
To enable secondary use of healthcare data in a privacy-preserving manner, there is a need for methods capable of automatically identifying protected health information (PHI) in clinical text. To that end, learning predictive models from labeled examples has emerged as a promising alternative to rule-based systems. However, little is known about differences with respect to PHI prevalence in different types of clinical notes and how potential domain differences may affect the performance of predictive models trained on one particular type of note and applied to another. In this study, we analyze the performance of a predictive model trained on an existing PHI corpus of Swedish clinical notes and applied to a variety of clinical notes: written (i) in different clinical specialties, (ii) under different headings, and (iii) by persons in different professions. The results indicate that domain adaption is needed for effective detection of PHI in heterogeneous clinical notes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.