As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we analyze domain bias in automated text-based personality prediction, and proposes a novel method to correct domain bias. The proposed approach is very general since it requires neither retraining a personality prediction system using examples from a new domain, nor any knowledge of the original training data used to develop the system. We conduct several experiments to evaluate the effectiveness of the method, and the findings indicate a significant improvement of prediction accuracy.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.