As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Combinatorial auctions are mechanisms for allocating bundles of goods to agents who each have preferences over these goods. Finding an economically efficient allocation, the so-called winner determination problem, is computationally intractable in the general case, which is why it is important to identify special cases that are tractable but also sufficiently expressive for applications. We introduce a family of auction problems in which the goods on auction can be rearranged into a sequence, and each bid submitted concerns a bundle of goods corresponding to an interval on this sequence, possibly with multiple gaps of bounded length. We investigate the computational complexity of the winner determination problem for such auctions and explore the frontier between tractability and intractability in detail, identifying tractable, intractable, and fixed-parameter tractable cases.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.