As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We generalise the interval-based relaxation to sequential numeric planning problems with non-linear conditions and effects, and cyclic dependencies. This effectively removes all the limitations on the problem placed in previous work on numeric planning heuristics, and even allows us to extend the planning language with a wider set of mathematical functions. Heuristics obtained from the generalised relaxation are pruning-safe. We derive one such heuristic and use it to solve discrete-time control-like planning problems with autonomous processes. Few planners can solve such problems, and search with our new heuristic compares favourably with them.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.