As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Automatic information extraction of medical concepts and classification with semantic standards from medical reports is useful for standardization and for clinical research. This paper presents an approach for an UMLS concept extraction with a customized natural language processing pipeline for German clinical notes using Apache cTAKES. The objectives are, to test the natural language processing tool for German language if it is suitable to identify UMLS concepts and map these with SNOMED-CT. The German UMLS database and German OpenNLP models extended the natural language processing pipeline, so the pipeline can normalize to domain ontologies such as SNOMED-CT using the German concepts. For testing, the ShARe/CLEF eHealth 2013 training dataset translated into German was used. The implemented algorithms are tested with a set of 199 German reports, obtaining a result of average 0.36 F1 measure without German stemming, pre- and post-processing of the reports.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.