As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Multi-Agent Learning is a complex problem, especially in real-time systems. We address this problem by introducing Argumentation Accelerated Reinforcement Learning (AARL), which provides a methodology for defining heuristics, represented by arguments, and incorporates these heuristics into Reinforcement Learning (RL) by using reward shaping. We define AARL via argumentation and prove that it can coordinate independent cooperative agents that have a shared goal but need to perform different actions. We test AARL empirically in a popular RL testbed, RoboCup Takeaway, and show that it significantly improves upon standard RL.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.