As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This study presents a prediction-based approach to determine thresholds for a medication alert in a computerized physician order entry. Traditional static thresholds can sometimes lead to physician's alert fatigue or overlook potentially excessive medication even if the doses are belowthe configured threshold. To address this problem, we applied a random forest algorithm to develop a prediction model for medication doses, and applied a boxplot to determine the thresholds based on the prediction results. An evaluation of the eight drugs most frequently causing alerts in our hospital showed that the performances of the prediction were high, except for two drugs. It was also found that using the thresholds based on the predictions would reduce the alerts to a half of those when using the static thresholds. Notably, some cases were detected only by the prediction thresholds. The significance of the thresholds should be discussed in terms of the trade-offs between gains and losses; however, our approach, which relies on physicians' collective experiences, has practical advantages.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.