As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Keeping up with changes in source system terms in a local health information infrastructure requires substantial effort. I developed a program to assist us that returns candidate mappings based on string similarities between newly encountered source test names, existing source test names, and our master dictionary term names. I evaluated this program's performance in identifying correct mappings through a retrospective study of term mappings to our master dictionary from four radiology systems. For source terms created after the initial system integration, the semi-automated mapping program identified correct mappings for 76.3% of terms from all systems. Overall, the program correctly identified mappings for 45.6% of all terms by exact string match to an existing term. The program identified correct mappings for 36.9% of the terms without an exact string match by string comparison to existing source terms, and for 54.4% of the remaining unmapped terms by string comparison directly to master dictionary terms. Because managing vocabulary mappings is resource-intensive, accurate automated tools can help reduce the effort required for ongoing health information exchange among disparate systems.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.