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Abstract. Ultrasonic guided-wave testing is one of the most widely used technology for Structural Health 
Monitoring (SHM) of rail tracks. Currently, cable is the main tool of signal transmission for guided 

wave-based track monitoring systems. The installation of cables can significantly increase the system cost 

and restrict the flexibility of system deployment. In recent years, the NB-IoT technology has been gradually 

app ied to the field of SHM, it offers long-range wireless communication among a large-scale sensor 

networks at the cost of minimum construction and maintenance. One primary obstacle hindering the 
integration of NB-IoT and guided wave-based track monitoring system is that the limited channel bandwidth 

of NB-IoT leads to significant transmission delay when transmitting the ultrasonic guided-wave signal 

sampled at Nyquist rate. In this paper, a Compressed Sensing (CS) framework for NB-IoT based rail-track 
monitoring system is proposed. The proposed CS framework utilizes the sparsity feature of the ultrasonic 

lamb-wave signal to enable sub-Nyquist sampling and maintain the feature of the measured signal at a low 

compression rate. To validate the proposed CS framework, the propagation time of lamb-wave is selected as 
the performance metrics. The experimental results show that compared with the traditional sampling method, 

the propagation time of lamb wave in rail track can be accurately extracted when the sampling rate is set to 

100kHz, therefore, the channel bandwidth of NB-IoT can meet the delay-free data transmission of a single 
ultrasonic sensor. 
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1. Introduction  

The structural integrity of rail tracks has always been paid an extra attention by railway 

operators. When the track operates under high load for a long time, cracks are easy to 

appear at the rail tracks. Ultrasonic guided-wave testing has been widely used for 

Structural Health Monitoring (SHM) of rail tracks [1~2] mainly due to its ability to 

inspect a long-range of continuously welded rail tracks from a single transducer 

location[3]. Currently, the cable is the main tool of signal transmission for guided 

wave-based rail track monitoring systems. The installation of cables can significantly 

increase the system cost and restrict the flexibility of system deployment. In recent 
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years, the NB-IoT technology has been gradually applied to the field of SHM, it offers 

long-range wireless communication among a large-scale sensor networks at the cost of 

minimum construction and maintenance. For example, Hu et al[4]. applied ZigBee 

technology to guide wave monitoring of rail. The integration of IoT and the ultrasonic 

guided-wave testing is expected to provide a promising solution for efficient, fast, and 

low-cost ultrasonic monitoring system [5]. Because Lamb Wave can detect both internal 

damage and surface damage, it is often used as an ultrasonic guided wave for structural 

damage detection. The frequency of the Lamb-wave signal generally ranges from 

60kHz to 200 kHz [6]. To minimize the signal distortion, ombining the Nyquist 

sampling theorem[7] with engineering practice, the sampling frequency is usually set to 

ten times of the frequency of lamb-wave signal. Many wireless standards can be used 

in IoT scenarios, such as WiFi, Bluetooth, GSM, etc. Among these standards, the 

NB-IoT plays a leading role by providing long-distance and robust communication to 

large-scaled, small, low-cost, and battery-powered sensors. Compared to WiFi, 

Bluetooth, NB-IoT provides a longer communication distance. Compared to GSM, it 

allows the sensor to achieve the same communication distance while consuming less 

power. Therefore, NB-IoT is considered as a promising wireless technology for the 

application of structural health monitoring [8~9]. However, the channel bandwidth of 

NB-IoT is significantly limited, which ranges from 160 Kbps to 250 Kbps [10], leading 

to significant transmission delay when transmitting the ultrasonic guided-wave signal 

sampled at Nyquist rate [11]. 

In recent years, a novel signal acquisition and compression theory named 

Compressed Sensing (CS) has been widely used in the application scenarios that 

require data compression. Unlike conventional data compression methods, CS allow 

the signal to be sampled at a sub-Nyquist rate, thereby reducing the amount of data to 

be transmitted, and then reconstructing the compressively sampled signal into a 

complete raw signal. Yuequan Bao et al. [12] used the acceleration data collected by the 

SHM system of the Yellow River Road Bridge in Binzhou, Shandong to study the data 

compression capability of CS. T Di Ianni et al. [13] studied the recovery of guided wave 

fields of aluminum plates and composite plates under different sparse substrates, and 

determined that sparse substrates were an important factor affecting the CS 

reconstruction performance. Yong Huang et al. [14] proposed a Bayesian Compressive 

Sensing(BCS) algorithm suitable for civil structural health monitoring (SHM) system, 

which can achieve perfect lossless compression performance at a high compression 

ratio. Jayawardhana M. et al. [15] studied SHM data acquisition based on CS, especially 

the application of CS in damage detection and location.  

This paper proposes a CS framework for NB-IoT based rail-track monitoring 

system is proposed. The proposed CS framework utilizes the sparsity feature of the 

ultrasonic lamb-wave signal to enable sub-Nyquist sampling and maintain the feature 

of the measured signal at a low compression rate. The proposed CS framework is 

validated by a set of experiments for measuring the lamb-wave propagation time in a 

rail-track specimen. Corresponding results show that the minimum compression rate 

that can maintain the characteristic quantity of lamb wave propagation time is obtained.  

that under the condition of no loss of lamb wave signal characteristics, the compressed 

sensing algorithm based on wavelet sparse basis can reduce the sampling frequency of 

lamb wave signal in the ultrasonic structural health monitoring system for rail-tracks to 

10% of the traditional sampling frequency, satisfying the communication requirements 

of NB-IoT. The remainder of this article is organized as follows: In section 2, the CS 

theory in the lamb wave monitoring system is briefly introduced, and how to select a 

X. Li et al. / Application of Compressed Sensing in NB-IoT-Based Structural Health Monitoring234



sparse basis to maintain the eigenvalue of lamb and the workflow of CS technology are 

described. In the third part, a verification test is designed to verify the proposed CS 

framework, the fourth part evaluates the performance of the proposed CS framework 

under different compression rates and discusses the minimum compression rate that can 

maintain the characteristic quantity of lamb. Finally, conclusion and future work are 

given. 

2. Compressed sensing for lamb monitoring system 

2.1. Basic Principle of Compressed Sensing 

The core idea of CS is that the original signal can be linearly measured by the 

measurement matrix during signal acquisition and a small number of measurements can 

be recorded. The nonlinear algorithm is used to recover the exact approximation of the 

original signal from a small number of measured value [16]. 

An important premise of compressed sensing is that the signal can be represented 

by the linear combination of a set of non-zero elements in certain sparse basis. Suppose 

the expression of signal x(n) on the sparse basis � is: 

x= �� � , or x= �� ��
�

                (1) 

There are k non-zero elements in �, k << N, then signal x (N) is k sparse on a 

�������	��
����������������
���������������������������
��������
���
��������������
���

only K elements are useful, and other elements will not affect the original signal even if 

they are discarded. The sparsity of a time-domain signal could be found by performing 

some orthonormal transformation [17]. 

The essence of compression is to project the signal X from the high dimensional 

space of N � 1 to the low dimensional space of M � 1 through the matrix �  

independent of � and obtain the linear measurement value y of M�1 to realize the 

signal compression sampling. Its mathematical process can be described as follows: 

 y= ��                        (2) 

By substituting formula (1) into formula (2), we can get: 

y= ��� �� = ���                (3) 

Where, �  is an M�N matrix, called the measurement matrix, and � =� � �  is an 

M�N matrix, called the observation matrix. Signal reconstruction means that y is 

known to invert x through formula (3). Due to the sparsity of X, namely M<< N, which 

ensures that formula (3) has a solution, but also that formula (3) has an infinite number 

of solutions. There are many methods to find the optimal solution in formula (3), and 
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this paper adopted Orthogonal Matching Pursuit (OMP) to reconstruct the lamb signals 

in ultrasonic guided wave-based structural health monitoring system for rail-tracks. 

2.2. Investigation of Sparse Representation of Lamb-wave Signal 

The sparsity of a signal in a sparse domain is the prerequisite for signal compression 

sampling. Signal sparsity also affects the accuracy of signal reconstruction. In general, 

the better the sparsity of the signal under a sparse basis, the higher the accuracy of the 

reconstructed signal after compression[18~19]. 

 

Figure 1. The sparse distribution of lamb signal in different sparse domains 

To minimize the compression ratio, we investigate the sparse representation of the 

lamb-wave signal using various widely used sparse transform basis, which including 

Discrete Fourier Transform (DFT), Discrete Wavelet Transform (DWT), Discrete 

Cosine Transform (DCT), and Fast Fourier Transform (FFT), Discrete Sine Transform 

(DST). As shown in Figure 1, the sparse coefficients of lamb wave signals in the sparse 

domain such as DCT, DFT, DST, FFT, and DWT are compared. The sparsity 

coefficients refer to a set of non-zero elements of the signal in the sparse domain, it 

represents the sparseness of the signal. For a sparse transform basis, the fewer the 

non-zero element can be used to represent the signal, the higher the sparseness and the 

higher accuracy of the reconstructed signal [19]. As can be seen from Figure 1, in the 

sparse domain such as DCT, DFT, DST and FFT, the number of sparse coefficients of 

lamb signal is greater than 140, and the number of sparse coefficients is the highest in 

the DST sparse domain. However, in the wavelet sparse domain, the number of sparse 

coefficients of lamb signal is 60, and its sparsity is the best. The better the signal 

sparsity, the less the characteristic loss of reconstructed signal. In the ultrasonic rail 

structure health monitoring system, the flight time of a0 and s0 modal lamb waves is 

often used as an important characteristic quantity of structural damage[2]. In order to 

verify the above theory, the flight time of a0 and s0 modal lamb waves of reconstructed 

signals and original signals under different sparse bases is compared based on the peak 

time of the wave. The comparison results are shown in Table 1, in which the flight time 

of a0 and s0 modal lamb waves of reconstructed signals under wavelet sparse basis has 

the minimum error with the original signal. 
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Sparse 
matrix 

Peak arrival 
time of 

Lamb s0 
wave(us) 

the peak arrival time (us) of 
the Lamb s0 wave extracted 
from reconstructed signals 

Peak arrival 
time of 

Lamb a0 
wave(us) 

the peak arrival time 
(us) of the Lamb a0 
wave extracted from 
reconstructed signals 

dwt 88.9 88.8 113.3 113.3 

dft 88.9 88.6 113.3 113.3 

dct 88.9 94.2 113.3 114.2 
dst 88.9 89.2 113.3 112.8 

fft 88.9 88.5 113.3 113.2 

3. Experimental set-up and Performance Evaluation 

3.1. Experimental set-up 

The peak arrival times of a0 and s0 modes of lamb-wave is often used as the 

characteristic quantity of damage detection in lamb wave monitoring. To evaluate the 

effect of the CS framework on lamb wave characteristics, a series of experiments were 

carried out. The raw signal is collected by the UT monitoring system shown in Figure 2 

(a). Excitation and receiving sensors are shown in Figure 2 (b). The system consists of 

an excitation signal source, excitation piezoelectric sensor, receiving piezoelectric 

sensor, conditioning circuit, and oscilloscope responsible for signal acquisition. 
The specific experimental parameters are shown in Table 2. This system is aimed 

at the half - moon crack at bottom of the rail[20], and the size of target damage is 

tens mm order[21]. 

 

a                              b  

Figure 2. Lamb monitoring system for rail-track 

Table 2. Experimental parameters 

Monitoring 
Distance 

Frequency of 
lamb-wave signal 

Conditioning circuit 
amplification factor 

Sampling Frequency 

200 mm 140KHz 300 1MHz 

Table 1. Preservation of feature quantities of lamb under different sparse basis 
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3.2. The workflow of CS in ultrasonic guided wave-based structural monitoring system 
for rail-tracks 

As shown in Figure 3, the frame diagram of compressed sensing technology is 

proposed for this paper. In this framework, for lamb signals in ultrasonic-based 

structural health monitoring system for rail-tracks, the sparse coefficient of lamb 

signals in the wavelet sparse domain is obtained by using the wavelet sparse bases 

selected in Section 2.2. Then, Gaussian random matrix is adopted as the measurement 

matrix and the OMP algorithm is adopted to solve the signal reconstruction problem. 

 

Figure 3. The workflow of CS in UT monitoring system for rail-tracks 

3.3. Performance Evaluation 

In the experiment, the raw signal sampled at 1MHz contains 2000 individual values, 

When the compression ratio was 0.3, 600 samples were measured for 2000 samples 

When comparing the raw signal and the compressive measured signal, it can be seen 

clearly that the peak arrival time of the two signals is almost the same, which means 

that the characteristic quantity of the original signal is maintained accurately in the 

recovered signal. Figure 4 depicts the raw signal sampled at 1MHz, sparse domain, 

reconstructed signal, and compressive measured signal, respectively. 
According to CS theory, according to the compression ratio theory, although low 

compression ratio is conducive to the collection and storage of data in the ultrasonic 

testing system of the Internet of Things, it is not conducive to the maintenance of lamb 

feature quantity. Figure 5 shows the evaluation of the reconstruction accuracy of the 

above CS framework under different sampling scores. It includes an absolute error, 

root mean square error, signal to noise ratio (dB), and peak signal to noise ratio (dB). 

The experimental results show that when the sampling fraction is greater than 0.1, the 

proposed CS framework achieves better reconstruction performance and remains 

within a relatively stable range. 
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Figure 4. Performance of CS framework 

 
           Figure 5. Performance Comparison of the CS method under different compression ratio 

As described in Section 2.2, the flight time of the a0 and s0 lamb waves is an 

important feature of the rail-based ultrasonic structural health monitoring system. This 

section discusses the lower bound of compression rate of CS algorithm based on 

wavelet sparse basis when the lamb feature loss is the smallest in ultrasonic structure 

health monitoring system for rail tracks. Figure 6 shows the original signal and the 

reconstructed signal when the compression ratios are set to 0.3, 0.1, 0.08, and 0.05 

respectively. Table 3 shows the peak arrival time of a0 mode and s0 mode of the 

original signal and the compression reconstruction signal under different compression 

rates. As shown in Table 3, when compression ratio > 0.1, the reconstructed signal 

retains the basic characteristics of the original lamb signal when compression ratio < 

0.1, the reconstructed signal cannot maintain the basic characteristics of the original 

lamb signal, resulting in a large error. Therefore, when the lamb signal in the rail is 

compressed, the compression rate should not be lower than 0.1. When the compression 

rate is set to 0.1, the corresponding sampling rate is 100kHz. The bandwidth of NB-IoT 

can be expressed as: 

= � �          

Where W refers to the bandwidth in bits per second, D stands for the sampling 

resolution (bits/sample), F represents the sampling frequency (sample/second), and N 

denotes the number of channels. Since the bandwidth of NB-IoT is 250 Kbps, and �����
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it can be deduced that the upper bound of sampling frequency is 250kHz per channel. 

Given that the minimum sampling frequency is 100kHz when applying the proposed 

CS framework, therefore, the data generated by a single transducer can be transmitted 

using NB-IoT without delay. 

 

Figure 6. Original signal and reconstructed signal at different compression rates 

Table 3. Peak arrival time of original signal and reconstructed signal under different compression rates 

Compress 
rate 

Peak arrival 
time of 

Lamb s0 
wave us  

Peak arrival time of 
the Lamb s0 wave (us) 

extracted from 
reconstructed signals 

Peak arrival time 
of Lamb a0 wave

us  

Peak arrival time 
(us) of the Lamb a0 
wave extracted from 
reconstructed signals 

0.3 88.9 88.8 113.3 113.3 
0.1 88.9 88.8 113.3 114.2 

0.08 88.9 88.2 113.3 116.5 

0.05 88.9 92.9 113.3 117.1 

4. Conclusion and future works 

This paper provides a theoretical and experimental basis for realizing the integration of 

NB-IoT and ultrasonic guided wave-based structure health monitoring system for rail 

tracks. The experimental results show that under the condition of no loss of lamb wave 

signal characteristics, the compressed sensing algorithm based on wavelet sparse basis 

can reduce the sampling frequency of lamb wave signal in the ultrasonic structural 

health monitoring system for rail-tracks to 10% of the traditional sampling frequency, 

satisfying the communication requirements of NB-IoT. 

In future stage, on the one hand, it is necessary to further verify the influence of 

the compressed sensing framework proposed in this paper on the characteristics of 

lamb wave reflected by the damage; on the other hand, sparse dictionary with optimal 

sparsity estimation can be developed to further reduce the minimum sampling 

frequency, and a more efficient measurement matrix and reconstruction algorithm 

should be designed to achieve a lower compression rate on the premise of maintaining 

the signal characteristics of reconstructed lamb signal. 
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