As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Stochastic satisfiability (SSAT) is an extension of satisfiability (SAT) that merges two important areas of artificial intelligence: logic and probabilistic reasoning. Initially suggested by Papadimitriou, who called it a “game against nature”, SSAT is interesting both from a theoretical perspective–it is complete for PSPACE, an important complexity class–and from a practical perspective–a broad class of probabilistic planning problems can be encoded and solved as SSAT instances. This chapter describes SSAT and its variants, their computational complexity, applications of SSAT, analytical results, algorithms and empirical results, related work, and directions for future work.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.