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Abstract. This paper proposes to use the Q-D (Quasi-Deterministic) method for 
reconstructing the angular and frequency characteristics of the 3D Air-to-Ground 

(A-G) channel from the available experimental data. This method allows to expand 

the applicability of tapped delay line (TDL) channel models for performance 
investigation of the aviation radio systems with directional antennas and multi-

element antenna arrays. The developed 3D A-G channel models also give 

opportunity to take into account Doppler spread impact on the communication 
system performance. 
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1. Introduction 

In recent years, it has been observed the very rapid development of unmanned aerial 

vehicles (UAV) technologies and their increasing use in various military and civil 

applications. Therefore, the number of works devoted to the study of characteristics and 

models of radio channels that provide UAV flight control and data transfer between 

them and ground stations has increased dramatically. Currently, many research 

organizations and standardization committees, such as [1], [2], are engaged in building 

radio communication networks with UAVs. 

The developed analytical models [3]-[8] do not always describe the real behavior 

of the Air-to-Ground (A-G) channels due to insufficiently realistic assumptions. 

Therefore, in recent years, quite intensive experimental studies of radio communication 

channels for UAVs have been conducted to build their empirical models [9]-[11]. 

The most detail experimental studies of the A-G channel for UAV were conducted 

in 2013-2017 as part of a project funded by the NASA J. Glenn research center [12]–

[15]. During the implementation of this project, a whole set of experimental 

measurements of the A-G radio channels in two frequency bands (L-band from 900-

977 GHz, and C-band from 5030-5091 GHz) was carried out in various scenarios: over 

water, in hilly and mountainous areas, in suburban and urban environments. Based on 

the gathered experimental data, evaluation of path losses, power delay profiles, K-
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factors, spatial correlation coefficients was made for all considered scenarios, and TDL 

channel models were developed. 

However, for practical applications, it is desirable to have more detailed 3D A-G 

channel models that adequately describe the spatial, temporal, angle and frequency 

characteristics of the channel, and allow investigation of the modern aviation radio 

systems with directional and multi-element antennas.  

In this paper, we, inspired by experimental data available from [12]-[15], propose 

to apply the Q-D method [16]-[17] to reconstruct the angular and Doppler spread 

characteristics of the rays. The key benefit of the Q-D approach compared to pure 

statistical channel models is its inherent support for spatial consistency. In this 

approach, the deterministic part of the channel impulse response (so called, 

deterministic rays) accurately takes into account the positions of the transmitter TX, 

receiver RX and a few strongest reflectors, always existing in considered scenario. The 

other part of the channel impulse response represents a number of relatively week 

random reflections (so called, random rays). Simulating moving objects, the Q-D 

channel model can accurately reproduce fading and Doppler effects, observed in real 

measurements [16]. This is not possible with a purely statistical model. At the same 

time, compared to the fully deterministic ray-tracing method, the Q-D approach has 

much less computational complexity. 

It should be mentioned, that the Q-D approach, used for recovering the missing 

parameters for building 3D A-G channel models, also allows us to expand the scope of 

application of the developed models to the different heights of the transmitter and 

receiver locations. 

It is interesting to note, that the Q-D method was initially introduced for 

development of 3D channel models for the millimeter wave bands [16] and then 

justified in a number of experimental measurements [17-18]. In the present paper, we 

apply the Q-D approach to build 3D A-G channel models for the centimeter wave C-

band, because the experimentally measured characteristics of the A-G channel for C-

band [12-15] are very similar to the characteristics of the millimeter wave 57-64 GHz 

channel for the Open Area outdoor hotspot scenario [17]. The physical background for 

this similarity is approximately the same ratio of the wavelength λ to the typical scale 

of the environment d in both bands. Indeed, for millimeter wave channel, this ratio is 

about λ/d=5mm/100-300m, and for the C-band λ/d=6cm/1-3km. It results in a 1:10 

scale similarity of the 3D channel impulse responses for these channels and justifies the 

application of the Q-D methodology for the C-band in the considered case.  

2. Problem Statement 

The Q-D method for recovering the unknown parameters of the channel rays exploits 

the combination of experimental data and some additional information about the TX 

and RX positions, antenna heights, properties of ground or water underlying surfaces, 

roughness coefficients, location of surrounding reflectors, etc. All these information 

should be specified in the description of the scenario. The 3D A-G channel model 

development is based on the experimental data provided in the set of papers [12]-[15]. 

The scheme of the typical experiment from these papers is shown in Figure 1. A 

scheme of the experimental measurements of the Air-to-Ground (A-D) radio channel 

characteristics [12]-[15].  
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The 10-watt sounding signal transmitter was located at the ground station (GS) 

with a nearly omnidirectional in azimuth antenna on height of 20 meters above ground 

level, while the receiver was located on an aircraft flying at an altitude of 800 to 1200 

meters at various distances of 2-50 km from the GS. The Q-D approach for channel 

modeling is built on the representation of the channel impulse response comprised of a 

few quasi-deterministic strong rays (D-rays) and a number of relatively weak random 

rays (R-rays), originating from the surrounding objects reflections.  

 

 

Figure 1. A scheme of the experimental measurements of the Air-to-Ground (A-D) radio channel 

characteristics [12]-[15]. 

The set of D-rays for open area scenario includes only two rays: direct LOS (line-

of-sight) ray and underlying surface reflected ray (see Figure 1). The characteristics of 

these both D-rays for the 3D A-D channel model may be calculated form system 

geometry, properties of ground surface and available experimental data [12]-[15]. 

The R-rays, in accordance with the Q-D methodology [16]-[17], may be generated 

in two different ways: statistically from the pre-defined power-delay profile or as 

deterministic reflections from the random surrounding objects. In this paper we use 

statistical characteristics of the R-rays defined in [12]-[15] and, for recovering 

unknown angular and frequency ray parameters, convert them into reflections from the 

random surrounding objects as it will be shown below. 

The A-G channel models, developed in [12]-[15], introduce four types of the 

multipath channel rays (see Figure 2): 

1. Direct LOS D-ray indicated by the wave vectors rTX,1 and rRX,1. 

2. NLOS (Non-line-of-sight) D-ray reflected from the underlying surface and 

indicated by the wave vectors rTX,2 and rRX,2. 

3. R-rays that have time delays exceeding the delay of the ground reflected 

NLOS D-ray. These R-rays indicated by the wave vectors rTX,i and rRX,i. 

4. R-rays that have time delays less than the delay of the ground reflected NLOS 

D-ray. These R-rays indicated by the wave vectors rTX,j and rRX,j. 

Solving the problem of the 3D A-G channel reconstruction, it is necessary to find 

(generate) the values of angles of departure (AoD), angles of arrival (AoA) and 

frequency shifts for each of the above types of the channel rays. 
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Figure 2. Four types of the A-D multipath channel model rays: LOS D-ray, NLOS D-ray reflected from the 

underlying surface, R-rays of type 3 and R-ray of type 4 with different delays. 

3. Channel Angular Parameters Reconstruction Algorithms 

The Q-D approach, used by the authors in this paper, involves calculating the AoD and 

AoA based on defining the position of channel reflectors in the space between the 

transmitter and receiver [16]-[17]. This task is solved in two steps: the first one is 

calculating the possible position of channel reflectors for each of the ray based on the 

known delays of the rays in the channel impulse response, and, the second one is 

calculating the AoD and AoA based on the relative locations of the TX, RX and the 

defined channel reflectors. 

We consider the reconstruction process for the departure and arrival angles for 

each of the four types of rays. For the direct LOS D-ray and the NLOS D-ray reflected 

from the underlying surface the departure and arrival angles are calculated directly 

from the coordinates of the TX and RX. Note, that for these D-rays, in the azimuth 

plane, the angles of departure (AzoD) and the angles of arrival (AzoA) can be set to 

zero, without loss  of generality, by selecting the appropriate coordinate system (see 

Figure 2a). 

Two assumptions have been made for the 3rd type R-rays that delay exceeds the 

delay of the ground reflected NLOS D-ray. First one, it is assumed that the trajectory of 

each R-ray is determined by a single reflection from some GS surrounding object, and 

second, this object is located near the earth's surface. Under these assumptions, the 

coordinates of the reflector generating this type of a R-ray lies on the underlying 

surface on some ellipse, which is the intersection of the corresponding ellipsoid of 

equal delays. For example, Figure 1 shows a scheme for calculating the position of 

channel reflectors for the 3rd type R-rays with delays τ1 and τ2.  

Following these assumptions, at the first step for each 3rd type R-ray the 

corresponding its known delay ellipse is constructed on the ground surface. Because, 
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the delay of the reflected ray does not give any reason to prefer a particular point on the 

ellipse, as the final position of the reflector, the choice of this point is made randomly. 

The point on the ellipse that is visible from the reflection point O of the NLOS D-ray at 

the random angle (uniformly distributed from 0 to 2π) is selected as the location of the 

reflector generating this 3rd type R-ray. 

For the 4th type R-rays those delays less the delay of the ground reflected NLOS 

D-ray, the reflecting object cannot lie on the underlying surface, since this D-ray has 

the minimum delay of all the rays reflected from this surface. Therefore, for the 4th type 

R-rays, the reflection point must lie above the underlying surface (earth or water). For 

example, it can be a reflection from a high building or from another high object that 

rises above the average ground level. The construction of the 4th type R-ray path, 

according to this assumption, is illustrated in Figure 2b. At the first step, at the height 

of the triangle O-RX-TX, drawn from point O, the point O1 corresponding to the R-ray 

delay is selected. Then, at the second step, the final point of the 4th type R-ray 

reflection is determined by rotating the point O1 in space around the LOS direction TX-

RX at the random angle in the range from  -π / 2 to π / 2. Since the rotation occurs 

around the line of sight, the final R-ray trajectory does not change the delay of the ray, 

but it adds additional variability to the values of the AoD and AoA of the 4rd type R-

ray.  

After calculating the coordinates of the reflection points for each of the R-rays 

from the channel impulse response (CIR), azimuth and elevation AoD and AoA in the 

global coordinate system are calculated using simple geometric constructions (see 

Figure 2). 

4. Doppler Shift Calculation 

The angular characteristics of the 3D A-G channel model, found by using the 

algorithms described in the previous section, make it possible to calculate the Doppler 

shifts for each ray in the CIR. Since the proposed reconstruction procedure makes it 

possible to set the AoD and AoA for each ray, the Doppler frequency offset can be easy 

calculated for each channel ray by setting the direction and speed of the transmitter and 

receiver relatively to the global coordinate system (see Figure 2). Therefore, in the 

considered approach, the Doppler spread of the transmitted signal spectrum is modeled 

as a set of Doppler shifts to the signal carrier frequency for each of the channel ray 

[17]-[18]. In the case of fixed channel reflectors and moving TX and / or RX, for each 

channel ray the Doppler frequency shift can be represented as the sum of frequency 

shifts before and after reflection (see Figure 2). So for the i-th ray: 

)( ,,
0

, iRXRXiTXTXid c
ff rvrv ����  , 

where vTX and vRX are the velocity vectors of the transmitter and receiver, respectively, 

and rTX,i and rRX,i are the unit wave vectors of the ray path for the TX and RX, 

respectively, f0 is the carrier frequency, c is the speed of light. 
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5. Simulation Results 

In the paper by the using the experimental data and characteristics of the TDL channel 

models given in [12]-[15], as well as on the basis of the developed Q-D methodology, a 

software model of the 3D A-G channel was implemented. At the same time, the 

approach to the channel modeling was slightly changed compared to the original TDL 

models from [12]-[15] in order to bring the methodology closer to the standards 

adopted for the development of wireless communication technologies by IEEE and 

3GPP. 

The system level simulation (SLS) platform for the 3D A-G channel model 

environment was created in the Matlab and C++. The software implementation 

includes procedures for the CIR generation, the AoD and AoA calculation for 

individual rays, and the ray Doppler shifts determination. The CIR generation involves 

calculating the power of the LOS D-ray, the NLOS mirror-reflected D-ray, and several 

R-rays with time delays both greater and less than the NLOS D-ray delay. For LOS and 

NLOS D- rays, the attenuation of their power in space is taken into account, as well as 

additional path losses due to the weather factors and vegetation. The R-rays generation 

was performed in accordance with statistical distributions of their delays and 

amplitudes given in [12]-[15]. After obtaining the CIRs and using the reconstruction 

algorithms described in the previous sections of this paper, the angular characteristics 

and Doppler shifts of all the rays are calculated. 

To check the adequacy of the developed 3D A-G channel models, ensembles of the 

CIRs were generated depending on the horizontal distance between the transmitting GS  

and the receiver located on the aircraft. Examples of these ensembles for flight 

scenarios “over-sea” (the GS height 20 m and aircraft altitude 800 m) and “over near-

urban environment” (the GS height 20 m and aircraft altitude 562 m) are shown in 

Figure 3a and Figure 3b, respectively. More detail comparison of these SLS results 

with experimental results, represented in [12] and [14],  shows that the developed 3D 

A-G channel model allows us to adequately reproduce the statistics of the real CIRs. 

 

 

Figure 3. Ensembles of the CIRs depending on the distance between the transmitter and receiver: A-flight 

scenario “over-sea”; B-flight scenario “over near-urban environment”. 

 

The histograms of the AoA and AoD distributions in the azimuth and elevation 

planes for the scenarios “over-sea” and “over near-urban environment”, obtained by 

using the reconstruction algorithms, described in the previous sections of the paper,  

shown in Figure 4 and Figure 5, respectively. 
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Figure 4. Histograms of the 3D A-G channel model ray angles distribution in the “over-sea” scenario: 
azimuth AoD and AoA on top, elevation AoD and AoA on bottom. The TX height is 20 m, the RX height is 

800 m, the horizontal distance between the TX and RX is 2260 m. 

 

  

Figure 5. Histograms of the 3D A-G channel model ray angles distribution in the “over near-urban 

environment” scenario: azimuth AoD and AoA on top, elevation AoD and AoA on bottom. The TX height is 

20 m, the RX height is 562 m, the horizontal distance between the TX and RX is 2260 m. 

 

It can be seen that for the TX, located at the GS near the ground, the AoD 

distributions in azimuth and elevation planes are much wider for both scenarios than 

for the RX located at the high altitude aircraft. This is due to the fact that the bulk of 
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the random R-rays in the A-G channel are obtained as a result of reflection from the GS 

surrounding objects on the ground surface. At the same time, the angular size of the 

reflection area is significantly smaller when observed from the aircraft, than when 

observed from the GS.  

It is interesting to note that for both scenarios, the distributions of the azimuth and 

elevation AoAs on the RX (aircraft) have approximately the same narrow width. The 

angular distributions of the departure rays for different scenarios turn out to be 

significantly different, which is probably determined by the various configurations of 

objects surrounding the transmitting GS. 

6. Conclusion 

In this paper, we have introduced a Q-D method for reconstructing the angular and 

frequency characteristics of the 3D A-D channel models based on the empirical TDL 

channel models [12]-[15]. The SLS platform for modeling all considered scenarios and 

environments was created in the Matlab. Simulations have shown that the developed 

3D A-G channel model adequately reproduces the statistics of the real CIRs and 

provides physically reasonable AoD and AoA distributions and Doppler spreads. Thus, 

the authors believe that this model is useful for characteristics evaluation of modern 

UAV and aircraft communication systems with directional and multi-element antennas. 

As the further steps in this work, the authors see in introduction of a more detail cluster 

structure of channel rays (including flash rays F-rays), which observed in experiments, 

and upgrade the SLS platform for modeling both the short and long term dynamical 

changes of the A-G channel.  
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