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Abstract. This study is mainly concerned with the problem of robust Hoo state
estimation of uncertain neural networks with two additive time-varying delays. A
novel linear matrix inequalities (LMIs) is constructed based on
Lyapunov-Krasovskii functionals (LKFs) which contains two additive time-varying
delays components. LMIs method are used to estimate the derivative of LKFs, it is
calculated that the derivative of the LKFs is smaller than zero, which proved that
uncertain neural networks with two additive time-varying delays is globally
asymptotically stable. Meantime, a stability criterion of error system is presented
such that the Hoo performance is guaranteed. Finally, two numerical simulation
examples have been performed to demonstrate the effectiveness of developed
approach.
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1. Introduction

Time-varying delays has received much attention which exists in many industrial and
engineering systems [1, 2]. Time-varying delays frequently cause oscillations,
divergence or instability of the systems, so the systems stability is the main consideration
for time-varying delay in many applications.

The stability problems for time-varying delays systems have been researched in
recent years. For example, Wu [3] studied the stability of an uncertain systems, which
contains multiple consecutive delay components. By considering the relationship
between the time-varying delays and its upper bound, but there is no system state
estimation, it is difficult to discover the change of the system, and the random
interference items has not been added. Whether the delay is included according to the
stability criteria, the delay systems is divided into two classes by Liu [4] which are
delay-independent and delay-dependent. Two additive time-varying delays system is
studied by Xiong [5] and establishes two novel integral inequalities, but the calculation
process of this research is too cumbersome. The stability of continuous linear system
with two additive time-varying delays is studied by Xu [6], which utilized the
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reciprocally convex combination technique. Subramanian [7] and Samidurai [8] studied
robust analysis for uncertain neural networks with two additive time-varying delays by
constructing Lyapunov-Krasovskii functions (LKFs) and making use of linear matrix
inequalities (LMIs) technique. Liang [9] and Yuan [10] studied complex-valued neural
networks (CVNNs) with two additive time-varying delays by constructing LKFs and
making use of LMIs to solve the stable problems. The results show the convergence of
the real and imaginary parts. The above literatures are for the stability analysis of two
additive time-varying delays system. These literatures did not refer to the system by
constructing state estimator.

Bao [11]. Hou [12], Liu[13], Shen [14], Zhang [15] and Zhao [16] studied with Hoo
state estimation problem for time-varying artificial neural networks. The aim of these
papers is to design a time-varying Hoo estimator, such that the dynamics of the estimation
error satisfy the given Hoo performance requirement. Liu [17] studied the problem of Hoo
state estimation of a static neural network with time-varying delay by constructing a
suitable Lyapunov function and ensuring the attenuation of the results as early as
possible, which indicates that the system is progressively stable under Lyapunov's
conditions. Hoo state estimation had been constructed in above literatures. Shao [18]
studied an Hoo control problem with delay-dependent stability condition, a new stability
criteria is obtained, and finally the system is proved to be asymptotically stable by
constructing a Lyapunov functional. Zhou [19] studied the robust Hoo control problem
for a delay singular system with parameter uncertainties. The influence of the system on
the disturbance is attenuated, which indicate that the system is in the state of Lyapunov
asymptotically stable by constructing a robust state feedback control law. A non-fragile
state estimator of the recurrent delayed neural networks is designed by Yang [20] to
ensure the existence of the desired estimators. The inadequacy of these researches is that
they do not consider two additive time-varying delays issues. Among them, the Heo
control essence is an optimization design using the Hoo norm as the objective function.
The Hoo norm is a norm defined on the Hardy space. In the Hoo control theory, it refers to
the maximum singular value of the rational function matrix parsed in the right half plane
of S.

Zhou [21] studied the problem of robust finite-time state estimation for a class of
discrete-time neural networks with two delay components and Mrakovian jump
parameters. And a new LKFs is constructed. Duan [22] investigated the state estimation
for Hoo control static neural network with two additive time delays. Time-varying delays
often occur in engineering systems, network control, and biological network control. It is
a factor that must be considered in the practice problems. In the problems of robust
control and nonlinear asymptotically stable control, time-varying delays are factors that
must be considered [23]. The difference between the leakage delays and the time-varying
delays is that it will cause the instability of the system, and the time-varying delays can
cause system delays [24].

There is less research in uncertain neural networks with two additive time-varying
delays, in this paper, we investigate the Hoo state estimation for uncertain neural
networks with two additive time-varying delays. Based on LKFs method, a novel LMIs
method has been established to ensure the global asymptotic stability of uncertain neural
networks with two additive time-varying delays. Finally, two numerical simulation
examples are used to illustrate the effectiveness of the proposed design method.
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2. System model and Preliminaries

Considering the following uncertain neural networks with two additive time-varying
delays:

() = — A, ()x(0) + 4, (0) f (x(D) + A, ()x(t —7,(6) ~ 7, (1)) + C, ()W() +u(r) 1)
¥(®) =B, (0)x(t) + B,()x(t —7,(t) — 7, (1)) + D, () w(?)

2(f) = Hx(t)

x(1) = p(2),t €[~ h,0]

Where x() €[x0.x,0).x,0] «®" is the state vector, ¥(*) is the measurement, #(*) is
the control input, z() €ll to be estimated is a linear combination of the state, w(®) is
disturbance input and w(e ’[0,], and 4., 4, 4, C,, B;, B,, D, and H are known real
constant matrices, () =LA f(5O)....[,(x,@)]" denotes the neuron activation
function and a constant input vector, and. AN)=4+A4  A)=A4+Ad,  AO)=4+Ad,
B(t)=B,+AB, | B,()=B,+AB, C()=C+AC,, D()=D,+AD, | A, A, A4, AB  AB, AC and

AD,is real matrix. These parameters represent the uncertainty of the system. ¢(?) is
represents a given initial condition.
Assumption 1. The parameter uncertainties A4, A4, | A4 AB, | AB, AC and AD are

of the form:

[AAI AAZ AA} ABI ABZ Aq ADI]zHF(t)[MII Ml2 MZI M22 Sl SZ S!] (2)

Among these parameters, .M, M,,M,,M,,S,,S,,F, is known real matrix of appropriate
dimension. F(1)eR™.,i>0,j>0 is the real unknown time-varying matrix. So,

F(t) F()<IVt20 3)

Assumption 2. The time-varying delays 7().7.() satisfy

0<7,(t)<7,<0,0<7,(t)<7,<00 “4)
JOEVRAGEYS ®)
= by = g+t ©)

where 7,7, are positive constants.

Assumption 3 [25]. Each neuron activation function f().i=12,...n satisfies the
following condition:

OS%SL,V%ﬂGR,a;ﬁﬂ (7)

where /,i=12,...n are constants, and diagonal matrix L=diag{/} .
Then, constructing a state estimator for estimation of Z(?) as follows
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(1) == A (OO + A, (O S GO + A(DF =7,(0) ~7,(1) ®)
+ K(y(0) =B (03(0) + B, (D3 ~7,(0) = 7, (D) +u
2(r) = HX(?)

x(2) =0,7 €[—h,0]

where x(1)ell” denotes the estimated state, 2() 1" denotes the estimated
measurement of (), and K is the state estimator
gain matrix.

Denoting the errors by e(®)=x()=3(?) and O=r(O+7,0) , Z(O=20)-20),
e(t—1,(t) — 7, (1) = x(t — 1,(t) — 7, (1)) — X(t — ,(1) — 7,(¢))
Then, based on (1) and (8), the error system of the form is obtained:

o) = ~(A, (1) + KB, (1))e(t) + 4, (1) g(e(t)) + (4,(1)~ KB, (1))e(t 7,(1) ~7,(1)) 9)
+(C,(1) - KD, (t)w(r)
Z(f) = He(t)

Where  g(e(®) =/ (x(®) - f(X),

elt) = (A (1) + KB, (1))e() + A, (1) g (e()) + (A4 (1) ~ KB, (1))e(t ~ (1)) (10)
+(C,(0) KD, (1) w(t)
z(t) = He(t)

In this paper we will study the stability of (10) so that guaranteed its Ho
performance. Moreover, it is proved by numerical simulation that the state estimation of
the system error equation tends to zero, which proves that the system is asymptotically
stable.

Definition 1 [25]. Given a prescribed level of noise attenuation » 20, a proper state
estimator (8) is founded, the equilibrium point of the result error system (10) with
w(t) =0 is globally asymptotically stable, and

[E@, <7wl, (11)

under zero-initial conditions for all nonzero w(?) € L,[0,0) , where

MO ’_[:xr(t)x(t)dt (12)

In this case, error system (10) is globally asymptotically stable with Hoo performance
7.

3. Results and Proof

In this section, the global asymptotic stability of the model (10) with the initial condition
(2)~(7) is discussed and the main results are given as follows:

Theorem 1. Considering the uncertain neural networks with two additive
time-varying delays (1), If there is an appropriate dimension of the matrix Y, for given
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scalars /1,5, >0 let 7 to be a prescribed constant, then the guaranteed Hoo performance
state estimation problem is solvable, if there exist real matrices 9.0,,0:.0,.05,0, >0
T> O,P] > Ost > OsSf > 0(1 = 132’3)5 Mf€ > 0(] =1,2,e= 172); pOSitiVC diagonal matrices R? = diag{?ﬁ} .

so the following LMIs are satisfied:

Q QZ QS s)H Qf Q(v Q7 QX QQ QIU |
R, Q Q Q O O, Q Q, Q
* * Q} glj4 QS Q(w glj7 QR (119 gl:' 10
*

*

o Q Qp Qp Qp Qp Q,
Q 0 0 0 0
00 0 0 0

9, 0 0

=}

<0

o o o

* Qe 0
* * *oQ,
* * * * Qe

=)

* % % % ¥ % ¥
* % % % % %

where

(13)

T pT Ty T T T T Ql()llJ:_721
Qn:*A]PI"'B]Y*A]Pl +BIY +Q1+Q2+Q3+Q4+Q5+Q6+M11+M11+M12+M127T+H H>

le:AsljlfBZY*AlTPlT+BITYT+R27T7M1|T+M21 Q|3:AvﬁfAlTPlT+817YT7M127+M72 Q, =R,
b - s b
Qs=4P -4 +BY . Qo =0(4"F +B'Y )~ AR +BY" s Q,=0,(4"R +B'Y) - 4'F +BY" . Q=15

Q, =1,5, S Q,,=RG s Q, :A|R*(1*T)M|T+(1*T)Mzz, Q;=0 s Q,, =R, _T, Qy; =(4R) s Qyg =5(4R) s

Q,, =5,(4R) ,st =1,5, R Quy=0, Q,,=0 ,Qﬁ ==0,-(1-0)M, +(1-1)M,, R Q, =0 S Q;=(BR) s

Qy :71(31P])T’ Q, =7,(BR) R Q=0 s Qyy =7,R, ,Qsm =0 R Q, :7P], Qy=B" Q=B y Q. =10,B" S

Q=18 R Q,=0 R Q=D R Qg =—7R, . Qg =—1,R, R Q, =-10,R, . Qu=—7R" . Qp=—0,R,]

where K = Py
Proof 1. constructing the following Lyapunov-Krasovskii functional:

V() =V + V(1) + V(O +V,(0)
Vie) =€ (ORe) +23 P[ " g(s)ds

" ()Qse()ds+ [ & (5)0se(s)ds

(1)

Vaep=[ ¢ ©)0Qes)s+ ]
+ 7 &’ ()0, e(s)ds + j &’ ()Ose(s)ds + J' &’ ()Ose(s)ds

vt e TR R a9 ],
L=l gt |+ R Lgtesn]®

Vie)=1, .[0,, J:LH e’ (s)R e(s)dsd0+ T-[i Jlﬂ e’ (s)R,e(s)dsdf +, J.iz _[l”er(s)&e(s)dsde

7 (1)

(14)

(15)
(16)

)
(18)

Taking the time-derivative of ro along the trajectories of yields. Robust stabilization of
the system. In this case, error system (10) is globally asymptotically stable with 7

performance v .
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Vi(e(n) = 2¢" ()R e(t) + 28" (e() P, elt) (19)
= 26" ()B[~(A (1) + KB, (1))e(t) + A, (g (e()) + (4; () ~ KB, (1))e(t (1))
+(C,(0) ~ KD, (0)w(0)]+ 2" () PI~(4,(1) + KB, (1)e(t) + A, (1) g (e(1)
+ (A1)~ KB, (1))e(t — (1)) + (C,(t) ~ KD, () ()]

=-2¢" (DR (A () + KB, (10)e(r) +2¢" (B (4,(t) = KB, (1)e(t — (1) + 2" (N R4, (g (e(1)
+2¢" (B (C, (1)~ KD, (0)w(1) - 2" (D) B, (4 (1) + KB, (0)e(t) + 28" (1) P, (4 (1) = KB, (1)e(r = 7(£))
+2g" ()P A, (Dg(e() +2¢7 (NP (C (1)~ KD, (1) w(t)

I}Z (8([)) < er(t)(Ql + Qz + Q} + Q4 + Qs + Qﬁ)e(t) - eT (t T )Qle(t - T|) (20)
—e'(t- 7,)0se(t=1,) - (- T)0se(t—7)—(1- 4 )er(t —7,(0)Qye(t —7,(1))
~(l= e’ (t =2, ()t ~7,(t) ~ (L= w)e” (1~ (1) Qe ~ (1))

I',}(e(t)){ e(r) }[Rl Rz:|{ e(r) }(17;0)){ e(t—7(1)) } {Rl Rz}|: e(t—7(t) }
gle®)| | * Ry | gle) glet-t@))) | | * R | glet—1(1)) 21)
<e'(ORe(t)+g" (e(t)Ryg(e(t) +2e (NR,g(e(t)) —(1— e’ (t —T(0)Rie(t — (1))
—(1-)g" (et — ()R, g(e(t —7(1))) = 2(1 - p)e” (1 =T (1)) Ryg (e(t — 7(1)))
. .T . ;T . .T . P .
Vile()=1e (R, e(:)—qjk e ()R e(s)ds+72e (R, e(t)—rz.[i e ()R, e(s)ds (22)
+ ér(t)Rz o)1 j . (5)R, e(s)ds
Among the equation of the p,(()), Then p,(e(r)) is obtained through above

formulas:

Ve <eie (OR -7 [ ¢ (R e(s)ds+72e (DR, ()7, I ¢ ()R, e(s)ds

4 1
= -

g (23)
+7e (R, e(t)—rj e ($)R, e(s)ds
-7
I . T R, T I . T Ry, T
=r"e (R, e(t)+a’ (1) . R a(t)+7ye (R e(t)+a (1) « R (1)
2 3
LT . IR T
+77e (R e(t)+a (1) « R o(t)
1
=T OZEO+ET (D40 +ET (D& =& (O +Z, +2)E()
<&z
72” ZIZ ZIS ZM ZI5 21() 217 218 219 ZIl(’l 1
* 22_ 223 224 225 Zzn Z27 ZZR Z29 ZZ]O
* * 233 234 235 236 237 238 23‘) z:SIO
* * * 244 Z45 246 247 248 24‘1 Z410
. * * * * 3 0 0 0 0 0
o= * * * * 3 0 0 0 0 < (24)
* * * * * * 3.0 0 0
* * * * * * * Ses 0 0
* *® * * * *® * 200 0
L * * * * * * * * * Zlulu
Where
Z” =_A|P] +31Y_AITET +BlTYT +Q1 +Q2 +Q3 +Q4 +Qs +Q6 +M|T| +M1| +M1T2 +M12 _T+HTH i

3,=AP-KBY-A'P +B'Y" +R,~T-M + M,
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S, =A4B—-A"R +B'Y -M," + M, , =R, , s =(4B+BY) —A'R +BY" ,
L=t (4R+BY) —~A'R +BY" I,=0,(4R+BY) -A4'R' +B'Y" 3¥,=1S %,=1S, I,,=RC
Ly =AR-(-0OM," +(1-0)My = £,=0  Z,=R-T Zx=(4R)  Zy=1(4R)" IZ,=0,(4R)
Tp=0Sy | Zp=0 | Ty=0  Zy=-0,-(-0My -(1-0M, = %,=0 = I =BR)
Zu=0(BR) Zy=0,(BR)  E4=0 Iy=0,R, I,,=0 T,=-R ;=B Z,=B I,=0B"
Tp=0B | Zp=0 Z,=D  Zg=-tR Zg=-tR  Z,=70R  Ig=-tR'  Iy=-0,R’

>

Zl(lll) = _72] T T T r r
> a(t)=[a; @), a, 0),a; 1),a, )]
0y (1) = el = 7(0)) — el =), 1, (1) = et = 7(0)) = el = 7) ——2 [ e(s)ds >
t—1(t) o
a () =e(t)—e(t—7(1),a,(t) =e(t) —e(t— T(t))*i I e(s)ds
T(t) -7 (1)

£ =[e" (0.7 (— (). (1-0).e" (1~ 1,0 (1= 1) (=, (1= 1), g (e(). & (D). W ()]

Combining the above results, (¢(s)) can be obtained:

V(e(t)) <~ (O[R(A (1) + KB, (1) + (4,(1) + KB,(1))" Ble(t) +2¢” (1) P.(4,(1) ~ KB, (1))elt ~ 7,(t) ~7,(1))
+2¢ (1) A, (g (e(1)) +2¢” (VR(C(0) - KD@O)w(1) +2g” (e, () A e(r) + e (1O, + 0, +0,)elr) 25)
—e'(t-1)Qe(t—1,)—e" (t—1,)0e(t—1,)—e (t—1)Qse(t —7) — (1- )e (t = 7,(1) Qe(t — 7, (1))
= (1= )" (t =1, (1) Qselt =7, (1)) = (1= p)e” (t = 1(1)) Qselt = 7(1)) + " (NRe(t) + &7 (e(s))R; g (e(s))
+2e" (R, g(e(s)) ~ (1= w)e” (t =7 ()Rie(t = (1))~ (1= i)g" (et = r() Ry g (e(t =7 (1))
=2(1-wye’ (=R, g(e(t =T () +E" (N(E, +Z, +Z,)E()
< §T(t)(2] +2,+2,)E(0)
<E 2L <0

Therefore, if LMIs is to be work, then y(e(s)) <0. The neural networks (1) is

asymptotically stable. This completes the Proof 1.
Since the function /(x(?) satisfy (7). Then, for any e(®)#0

8.(e(0), (1)) _ f(x() - f(G (@)
0= ey  x(t)-i(t) <h (26)

Under the zero-initial condition, it is obvious that ¥(e(®)|,=0. For dealing easily. Let

T, = [[[Z7 ()7 (5) =W (s)w(s)lds,t >0 @7)
Then,
1, < [T Z(5) =W ()5 s+ (el0) =V (et >0 28)
Then for any w(1) e L’[0,%0] ,
(29)

J, < jo PIET()Z(5) — W (s)w(s) +V (e(s))]ds
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Based on the equalities and inequalities, we can deduce that:
2 (O - (WD) +V (et) < O[5, + ZIR.E, 1) (30)

X 25 T . .
So if Z1+7 % RE. <0 then there must exist a sufficiently small scalar @, so

2 T
L +TE B2, +01<0 Then, it is easy to obtain

that for any w())#0

2T (OZ(0) W (W) +V (1) < ET (O, +7°%, R, (1) (31)
<—c&T (D) < —ow” (HW(t) <0

Proof 2. The system is robustly, asymptotically stable if the following inequalities
is satisfied:

Q+p F (9] +0,FOp +9,FOp) +,F(O)p; + 9 F(O)p; +pF (0o <0 (32)

p=[H'R 000000000 g=000000000 HR]
Where ,

p=[M, 0 M, 0000000 g=[M,, 0 M, 000000 0f
b

b}

>

=[S, 05 0000000 @=[S 000000000

>

If (13) is satisfied, then the following inequalities:
Q+2,' P +E0.0) +8,' 0,05 + 60,0, + &' P05 +E30sp] =Q+yr

(&' PTHHTP +'M, M, 1 (33)
2 0 0 000000 0
+e,M, M} +&'S,S] +¢,5,8]
0 0 000000 0
&' MM/, +e,M, M),
2P T 2T g5 000 0 0
+£{'SZSZT
000000 0
=0+ 00000 0
0000 0
000 0
00 0
0 0

L €]R4H'HR4'7
where & >0,&,>0,6,>0,

Then, the inequalities given in (33) is equivalent to the LMIs (25). Thus, if the LMIs
given in (25) is satisfied, then the system (10) is robust asymptotically stable. This
completes the Proof 2.

Corollary 1 Considering the neural networks with two additive time-varying
delays system (1), for given scalars #<1 and K , let 7 be a prescribed constant, the
guaranteed Ho performance state estimation problem is solvable if there exist real
matrices Y>0, M, >0(j=12e=12) and diagonal matrices 2 =diag{n,} with appropriate
dimensions, then the following LMIs are satisfied:
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AY ;
CDII (Dm R PIBI - YBz H
-B)Y
= (- )M, 0 0 0 0
o=| * * —(1- M, @, 0 0 (34)
* * * —(1— p)M,, 0 0
* * * * ~(-mM, 0
* * * * * —yI

(Dn :_‘DIAI _A|TET _Bly_YTBlr +M|| +M12 +Mz| +Mzz
Dy =—(1-w)(M,, + M,,) 2P, , D, =—(1-p)(M,, + M,,) 2P,

Moreover, the gain matrix K of the state estimator of (8) can be designed as
K=R'Y,

Remark 1. Theorem 1 provides a novel robust Ho state estimation of uncertain
neural networks stability criterion for system (1) with two additive time-varying delays
components, it has been verified by a form of less complex LMIs.

Remark 2. Based on the Lyapunov stability criterion, a novel LMIs is constructed
to prove that the derivative of the LKFs is smaller than zero, and that the system (1) is
asymptotically stable.

Remark 3. The state estimation uncertain neural networks methods are listed in
table 1.

Table 1. state estimation of uncertain neural network methods.

numbers 1 2 3 4 5 6 7
Ho Robust State Extended Delay Non-fragile  Recursive
methods State finite-time  estimation  dissipative  dependent state state
estimation state [26] state state estimation estimation
[22] estimation estimation  estimation [29] [30]
[21] [27] [28]

Compared with other theories, the Ho theory can give delay-dependent criteria, so
that the error system has globally asymptotic stability H~ performance.

Remark 4. The structure of paper is organized as follows: In Section 2, problem
model are given. In Section 3, a new
theorem and three corollaries are established. In Section 4, two simulation results are
provided to demonstrate the effectiveness of the developed approach. Finally, Section 5
summarizes this work.

4. Numerical Examples

Two numerical simulation examples are to be presented to show the feasibility of the
developed approach.
Examplel. Considering the system (10) with following parameters:

10 10 20 0l 0 0 10 10
A‘:L 4}! AZ:L 71}’ Al{o 71}’ B‘{o OJ’ BZ:M > C:L) I}’ D{o 1}’%’«‘*:[0 0 02,

0.2
x=|03|, 1=0157,=024, 1=0,dr=0.001
1
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In addition, the activation function is chosen as /(x)=tanh(x) | the time-varying delay by
40107 -1.7896

17896 74.6767}, 7 =0.39 .the noise disturbance is assumed be

7(1)=0_ 1t is easy to get K:[

1

MO=15 0

:[05749 -0.0197} {0.1972 0 } Y:r.mm —17896} S{-z.sm 040969}
U1-00197 05245 [ 0 0a9m) 0 -17896 -4.6767| > ' | 0.0969 -24532] °

_[0.0250 -0.0874]  [581417 582298

37{70.0874 —0.0408}’ '{58.2298 436.2641}

0.8732 0.1111 4364433 -57.6238 282.9611 44.2303 3009950 43.6859
{0.1111 1.0659}’QJZQ4:Q5:Q6:{-5746238 64.8827}’ ”:{44.2305 37.1869}’ ”:[4346859 5343194}3
{28049950 4241068} _{300.6336 43.8862}

)

_[-0.0163 0.0291
271 0.0291 0.0200] °

2

n

27| 421068 33.6494 43,8862 53.7267

With the option Ho performance index »=1.3811. Fig 1 shows the responses of the
estimation error curves which generated by random initial value, it confirms the
feasibility of the developed LMIs method through the designed state estimator of
uncertain neural networks with two additive time-varying delays.

By applying the MATLAB LMI toolbox, it is found that LMIs (13) is feasible. As
Fig.1 illustrates, the initial matrix of the examplel is a two-dimensional matrix, there are
four estimation error curves. The state estimation tends to O rapidly. Therefore, it is
proved that uncertain neural networks with two additive time-varying delays is globally
asymptotically stable through proposed LMIs. The calculated minimum Heo
performance index 7 with different #<1 values are listed in Table 2. One can know
clearly that the results obtained by Corollary 1 can provide smaller H~ performance
index 7 than recently existing method in [1].

Table 2. Minimum Hoo performance index 7 with different 4 .

H 0.4 0.5 0.7
Reference [1] 0.4632 0.5301 1.3819
Corollary 1 0.0035 0.1544 0.4402

Example2. Considering a delayed neural network of Corollary 1 with following
parameters:

-1 1 0 -1 1 0 -10 0 -1 0 0 100
4=/2 1 -1|B=|-1 1 -1|B=|0 1 ~1| 4=1 1 0I={0 1 0| y=05x=05
1 -1 2 -1 -1 1 -1 0 1 1 -1 -1 00 1

In addition, the activation function is chosen as /(x) =tanh(x) | the time-varying delay by
7(1) =0Tt is easy to get

0.0120 0.0394  0.0110 —0.0245 0.0744  0.0188 -0.1238 0 0
K=10"%0.0394 02970 -0.1812 ,h= 107 % 0.0744 02718 -0.1799 Jb= 107°% 0 -0.1238 0
0.0110 -0.1812 0.2188 0.0188 —0.1799 0.2296 0 0 -0.1238
0.0120  0.0394  0.0110 0.6127 0 0 0.0244  -0.0197 -0.0132
Y=10"*0.0394 02970 -0.1812 JH =10"* 0 0.6127 0 | M, =10"*-0.0197 0.0939 -0.1353 s
0.0110 -0.1812 0.2188 0 0 0.6127 -0.0132 -0.1353  0.1524
0.0400  0.0266 —0.0520 0.0727  0.0332  -0.0076 0.1040  -0.1395 -0.1606

My, =10% 00266 01108 01033 | M, =10"% 00332 01481 -0.0368| M, =10""%|-0.1395 03238 00840 |
~0.0520 —0.1033  0.1156 00076 -0.0368 0.1161 -0.1606 00840 —0.0893
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Figure 1. Estimation errors e;,e,,e; and e, Figure 2. Estimation errors ¢,e,,e;,¢,,¢; and ¢
The global asymptotically stable simulation results of the system (10) with the
above parameters is illustrated in Fig.2.
the initial matrix of the example 2 is a three-dimensional matrix, there are six estimation
€rTor curves.

5. Conclusions

In this paper, the problem of Hoo state estimation of uncertain neural networks with two
additive time-varying delays has been studied. Based on LKFs method, a novel LMIs
method has been established to ensure the global asymptotic stability of uncertain neural
networks with two additive time-varying delays. It has fine convergence speed through
constructed LMIs. Two numerical simulation examples have been performed to
demonstrate the feasibility of the developed approach.

We would like to point out that this work did not include the Hoo state estimation of
uncertain neural networks with leaking time delay.
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