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Abstract. In this work, the AutonomousSystems4D package is presented, which
allows the qualitative analysis of non-linear differential equation systems in four
dimensions, as well as drawing the phase surfaces by immersing R4 in R3. The
package is programmed in the computational tool Octave. As a case study applied
to the new Lorenz 4D System, sensitivity was found in the initial conditions, Lya-
punov exponents, Kaplan Yorke dimension, a stable and unstable critical point,
limit cycle, Hopf bifurcation, and hyperattractors. The package could be adapted to
perform qualitative analysis and visualize phase surfaces to autonomous systems,
e.g. Sprott 4D, Rossler 4D, etc. The package can be applied to problems such as:
design, analysis, implementation of electronic circuits; to message encryption.
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1. Introduction

Several physical phenomena are modeled with systems of differentict the phenomenon,
but if they do in a fairly approximate way, the confidence in the results of the model is
given by the qualitative analysis of the system..

In this work, a package in Octave 5.1.0 called AutonomousSystems4D is presented,
which allows qualitative analysis, as well as visualizing phase surfaces of non-linear
systems immersed in a four-dimensional (4D) system. As far as we know, there are no
similar works.

Currently, to visualize the phase maps and the limit cycles of the systems that are
in 4D, they are projected in three dimensions making zero any of the coordinated axes,
which will have four surfaces to analyze (see for example [1–3]). In the developed pack-
age, no projections are used, the Velezmoro model is used, which allows visualizing 4D
objects in a three-dimensional (3D) system (see Section 2.1), so you will have a sin-
gle surface, which can be rotated from different angles, this allows a better analysis of
what happens in the system of 4D equations. The package could be adapted to perform
qualitative analysis and visualize phase surfaces to autonomous systems, e.g. Lorenz 4D,
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Sprott 4D, Rossler 4D, etc. In this paper we apply it to perform qualitative analysis and
visualization of a Lorenz hyper-caotic system immersed in R4

Lorenz found the first strange attractor in the three-dimensional autonomous system
of equations. In [4, 5] qualitative analyses are carried out for this type of system. Works
on the Lorenz system in a four-dimensional space can be found in [6–8], these systems
are hyper-caotic systems having two or more positive Lyapunov exponents.

The package can be applied to problems such as: design, analysis, implementation
of electronic circuits [2, 3, 9]; to message encryption [10].

2. Preliminaries

Definition 1 . Hopf bifurcation [4].
Is the bifurcation corresponding to the presence λ1,2 =±iw0, con w0 > 0.

Definition 2 . Break-even point [5].
The point X = a with f (a) = 0 is called the critical point of the equation X ′ = f (X).

Theorema 1 Lyapunov [4].
Consider a dynamic system defined by X ′ = F(X), where X ∈ Rn, F is continuous.
Suppose you have an equilibrium X0, A = FX (X0) (A es A is the Jacobian matrix of F(X)
evaluated in equilibrium). Then X0 is stable if all the eigenvalues λ1,λ2, ...,λn of A satisfy
Reλ < 0.

Definition 3 . In order for the system of 4D equations to be hypercotic it must satisfy
three conditions: [6].
1) A four-dimensional autonomous system is required.
2) Sensitivity in the initial conditions.
3) Two or more positive Lyapunov exponents and the sum of all Lyapunov exponents is
less than 0.

Method for finding two roots in the imaginary axis. Consider the cubic equation.

λ 3 +L1(c)λ 2 +L2(c)λ +L3(c) = 0 (1)

Let λ = iw0 an imaginary solution, then the cubic equation is equivalent to:

iw0(L2(c)−w2
0)+(L3(c)−L1(c)w2

0) = 0 (2)

Where L2(c)−w2
0 = 0 y L3(c)−L1(c)w2

0 = 0
that is to say, L3(c) = L1(c)L2(c)
Let c = c0 satisfy (3), and let λ1,2 =±iw0 and λ3 = λ0 roots of Equation (1)

w0 =
√

L2(c0) (3)

In addition, it must be observed that (λ − iw0)(λ + iw0)(λ −λ0) = 0

λ 3−λ0λ 2 +w2
0λ +(−λ0w2

0) = 0 (4)

From equations (1) and (4) the imaginary roots are obtained:
λ1,2 =±i

√
L2(c0) and λ3 = λ0
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2.1. Velezmoro Diving Model

Based on the model that allows three-dimensional (3D) objects to be displayed on a two-
dimensional (2D) screen; Velezmoro and Ipanaque [11], propose a model that allows
four-dimensional (4D) objects to be displayed in 3D.

Required: four non-collinear vectors in space

B̂ = {(e11,e12,e13),(e21,e22,e23),(e31,e32,e33),(e41,e42,e43)}

a dip that transforms a point p = (p1, p2, p3, p4) ∈ 4D into a point q = (q1,q2,q3) ∈ 3D.
For example ϕ(p) = 1√

3
(p1+ p2+ p3+ p4,−p1+ p2+ p3− p4,−p1− p2+ p3+ p4)

3. Octave Package for Qualitative Analysis and Visualization of 4D System Phase

Surfaces

The AutonomousSystems4D package has been developed in octave 5.1.0, it allows you
to visualize phase surfaces of ordinary differential equation systems, linear and non-
linear, that are immersed in the fourth dimension. The Octave ode45, lsode libraries have
been used to solve differential equations in numerical form. It also allows calculating
the Lyapunov exponents and convergence or divergence of trajectories of the system’s
solutions. In this case it has been adapted to work with the Lorenz system in 4D.

3.1. Program for Graphing Phase Surfaces of 4D Systems

Subprogram 1 (System of Lorenz equations in 4D).
x = 0;
function xdot = func(x, t)

% value of the parameters of the hypercotic system.
a = 10;b = 8/3;c = 35;d = 0.5;
xdot(1,1) = a∗ (x(2)− x(1)); xdot(2,1) = c∗ x(1)− x(1)∗ x(3)− x(2)+ x(4);
xdot(3,1) = x(1)∗ x(2)−b∗ x(3); xdot(4,1) =−d ∗ x(1);

end
x0 = [0,2,0,0];% Initial conditionl
t = linspace(0,200,15000);% time interval;
tic;
x = lsode(′ f unc′,x0, t);% solves the system of 4D toc equations
toc;
z = [x(:,1)x(:,2)x(:,3)x(:,4)];% solution matrix
% Velezmoro model
p1 = (1/sqrt(3)).∗ [z(:,1)+ z(:,2)+ z(:,3)+ z(:,4)]; p2 = (1/sqrt(3)).∗ [−z(:,1)+ z(:
,2)+ z(:,3)− z(:,4)];
p3 = (1/sqrt(3)).∗ [−z(:,1)− z(:,2)+ z(:,3)+ z(:,4)];
plot3(p1,p2,p3,’b’,’linewidth’,1.5); xlabel(’X’); ylabel(’Y’); zlabel(’Z’)
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3.2. Program to Calculate Lyapunov’s Exponents

The method for calculating Lyapunov’s exponents can be found in [4]
Subprogram 2 (Lyapunov’s Algorithm).
f unction[Texp,Lexp] = lyapunov(n,rhs−ext− f cn, f cn−integrator, tstart,stept, tend,ystart);

%n : number of non-linear OEDs. %n2 : total number of OEDs
n1=n; n2=n1*(n1+1); % Number of iterations
nit = round((tend-tstart) /stept); % Memory allocation
y =zeros(n2,1); cum =; zeros(n1,1); y0 = y; gsc = cum; znorm = cum;
y(1:n) = ystart(:); % Initial values
for i = 1 : n1 y((n1+1)*i) = 1.0; end;
t = tstart;
% Main Loop
for ITERLYAP = 1: nit

% Extended ODE System Solution
[T,Y ] = f eval( f cn−integrator,rhs−ext− f cn, [t, t + stept],y);
t = t+stept; y = Y(size(Y,1),:);
for i = 1:n1

for j = 1:n1 y0(n1*i+j) = y(n1*j+i); end;
end;
% Construction of a new orthonormal base using gram-schmidt
znorm(1) = 0.0;
for j= 1:n1 znorm(1) = znorm(1)+ y0(n1*j+1)ˆ2; end;
znorm(1) = sqrt(znorm(1));
for j=1:n1 y0(n1*j+1)= y0(n1*j+1)/znorm(1); end;
for j = 2:n1

for k = 1:(j-1)
gsc(k) = 0.0;
for l = 1:n1 gsc(k) = gsc(k)+y0(n1*l+j)*y0(n1*l+k); end;

end;
for k = 1:n1

for l = 1:(j-1)
y0(n1*k+j) = y0(n1*k+j)-gsc(l)*y0(n1*k+l);

end;
end;
znorm(j) = 0.0;
for k= 1:n1 znorm(j) = znorm(j)+y0(n1*k+j)ˆ2; end;
znorm(j) = sqrt(znorm(j));
for k = 1:n1 y0(n1*k+j)=y0(n1*k+j)/znorm(j); end

end;
for k = 1:n1 cum(k) = cum(k)+log(znorm(k)); end;
% normalize exponents
for k = 1:n1

lp(k) = cum(k)/(t-tstart);
end;
% Output data
if ITERLYAP == 1
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Lexp = lp; Texp = t;
else

Lexp = [Lexp; lp]; Texp = [Texp; t];
end;
for i = 1:n1

for j = 1:n1
y(n1*j+i) = y0(n1*i+j);

end;
end;

end;
end;
Subprogram 3 (Lorenz 4D system).
function f = exp lyapunov4(t,X)

a=10;b=8/3;c=35;d=0.5; x=X(1); y=X(2); z=X(3);w=X(4);
Y= [X(5), X(9), X(13),X(17); X(6), X(10), X(14), X(18);...
X(7), X(11), X(15), X(19); X(8), X(12), X(16), X(20)];
f=zeros(16,1);
f(1)=a*(y-x); f(2)=c*x-y-x*z+w; f(3)=x*y-b*z; f(4)=-d*x;
Jac=[-a a 0 0;c-z -1 -x 1;y x -b 0;-d 0 0 0]; f(5:20)=Jac*Y;

end

Subprogram 4 (Calculation of Lyapunov’s exponents).
[T,Res] =lyapunov(4,@exp lyapunov4D,@ode45,0,0.5,200,[0 2 0 0]);
hold on
plot(T,Res(:,1),’r’,’linewidth’,2); plot(T,Res(:,2),’b’,’linewidth’,2);
plot(T,Res(:,3),’k’,’linewidth’,2); plot(T,Res(:,4),’g’,’linewidth’,2);
xlabel(’Time’); ylabel(’Lyapunov exponents’); Res(length(Res),:);

3.3. Program for Displaying Sensitivity under Initial Conditions

Subprogram 5

% calculates the solutions
x=0;
function xdot=func(x,t)

a = 10;b = 8/3;c = 35;d = 0.5;
xdot(1,1) = a∗ (x(2)− x(1)); xdot(2,1) = c∗ x(1)− x(1)∗ x(3)− x(2)+ x(4);
xdot(3,1) = x(1)∗ x(2)−b∗ x(3); xdot(4,1) =−d ∗ x(1);

end
x0 = [0,2,0,0]; X0=[0, 2, 0, 0.1]; t = linspace(0,60,200); tic;
x=lsode(’func’,x0,t);
z=[t’,x(:,1),x(:,2),x(:,3),x(:,4)]; toc;
plot(z(:,1),z(:,5),’r’,’linewidth’,1.5);
xlabel(’T’,’FontSize’,14); ylabel(’w(t),W(t)’,’FontSize’,14); hold on; tic;
X=lsode(’func’,X0,t); Z=[t’,X(:,1),X(:,2),X(:,3),X(:,4)]; toc;
plot(Z(:,1),Z(:,5),’b’,’linewidth’,1.5)
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4. Qualitative Analysis of the Lorenz Hyperchaotic System in R4

In this section, the AutonomousSystems4D package (see Sectión 3) is applied to per-
form the qualitative analysis of the Lorenz System (5), as well as to visualize the phase
surfaces that are in 4D.

In ( [6]), the four-dimensional (4D) Lorenz System was proposed, with the equations
of state:

x′ = a(y− x) y′ = cx− y− xz+w z′ = xy−bz w′ =−dx (5)

Where x, y, z and w are state variables; a, b, c y d are positive control parameters of the
new Lorenz 4D system. This system is hypercotic for a = 10, b = 8/3, c = 38 and d =
0.5 [6].

4.1. Sensitivity in Initial Conditions

To analyze the sensitivity in the initial conditions, perturbations are made in the initial
condition of each variable. For x = 0 and x = 0.1. See Figure 1 (left); y = 2, y = 2.1. See
Figure 1 (right); similarly for z = 0 and z = 0.1; w = 0, w = 0.1. It can be seen that the
paths diverge in time.

Figure 1. Disturbance to initial condition (0,2,0,0)

4.2. Lyapunov’s Exponents

If in (5), the value of the control parameters are: a=10, b=8/3, c=35, d=0.5 and initial
condition (x,y,z,w)=(0,2,0,0); the Lorenz 4D System has three positive exponents and
one negative Lyapunov exponent (See Figure 2 left)

λ1 = 0.996745,λ2 = 0.011837,λ3 = 0.010623,λ4 =−14.681099 (6)

Suma = λ1 +λ2 +λ3 +λ4 =−13.662 < 0 (7)

The Lyapunov dimension of the hyper-caotic attractor is fractional for parameter
values, a = 10, b = 8/3, c = 35, d = 0.5 and initial conditions (x,y,z,w) = (0,2,0,0).

DLY = j+
1

|λ j+1|
j

∑
i=1

λi = 3+
1

|−14.681099| (0.996745+0.011837+0.010623)= 3.0694
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Figure 2. Lyapunov exponents (left), Hopf bifurcation (right)

4.3. Dissipation and Existence of the Attractor

The system divergence (5) is defined by: ∇V = ∂x′
∂x + ∂y′

∂y + ∂ z′
∂ z +

∂w′
∂w

And it measures how quickly volumes change under system flow.

∇V =−a−1−b =−41
3

;V (t) =V (0)e−
41
3 t

When t → ∞ the volume is reduced exponentially to zero. Any solution that enters the
attractor will remain in time.

4.4. Vector Field Analysis

Applying the coordinate transformation to the original system:(x,y,z,w)→ (−x,−y,z,−w),
if the equations of state remain unchanged, it means that the phase surface of the system
is symmetrical with respect to the z-axis.

x′ =−a((−y)− (−x)) =−x′
y′ =−c(−x+(−y)+(−x)z− (−w)) =−y′
z′ = (−x)(−y)−bz = z′
w′ = d(−x) =−w′

There is a symmetry with respect to the z axes in the vector field. What happens
when the flow of the system of equations crosses the coordinate axes, in the z axes,
x′ = y′ = 0 and z′ = −bz. This indicates that every orbit that passes through the z axes
cannot leave it and therefore is invariant.

4.5. Calculation of the Equilibrium Point

To find the equilibrium point, each Lorenz 4D system equation is equated to zero.

a(y− x) = 0 cx− y− xz+w = 0 xy−bz = 0 −dx = 0 (8)

The equilibrium point obtained is P0 = (0,0,0,0)
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4.6. Linearization of the Lorenz 4D Hyperchaotic System

Jacobian matrix of the Lorenz system of equations 4D:

J =

⎛
⎜⎜⎝
−a a 0 0

c− z −1 −x 1
y x −b 0
−d 0 0 0

⎞
⎟⎟⎠

Jacobian matrix of the system evaluated at break-even (0,0,0,0):

A =

⎛
⎜⎜⎝
−a a 0 0
c −1 0 1
0 0 −b 0
−d 0 0 0

⎞
⎟⎟⎠

4.7. Calculation of Eigenvalues

det(A−λ I) = (λ +b)(λ 3 +(a+1)λ 2 +(a−ac)λ +ad) = 0 (9)

Be L1 = a+1,L2 = a(1− c),L3 = ad
Cubic polynomial discriminant for values of parameters a = 10, b = 8/3 y d = 0.5.⎧⎨
⎩

Si �> 0, three different real roots
Si �= 0,multiple real roots
Si �< 0, it has one real root and two complex roots

4.8. Stability Analysis at Origin

With the parameters a = 10, b = 8/3, d = 0.5 and c variation parameter.

Figure 3. For c = 0.9 (left) the orbits tend to the origin, at c = 2.5 (right), the orbits have a stable limit cycle.

Case 1: When 0 < c< 0.95455, the origin is asymptotically stable, there are two negative
real eigenvalues and two imaginary eigenvalues that have a negative real part, therefore,
all paths converge to the equilibrium point (0,0,0,0) (see Figure 3, left).
Case 2: When 0.95455 < c < 2.53, the equilibrium point (0,0,0,0) is unstable, there are
two negative real eigenvalues and two imaginary eigenvalues that have a positive real
part, in this interval a limit cycle occurs (See Figure 3, right).
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Case 3: When c ≥ 2.53, the equilibrium point (0,0,0,0) is saddle, there are two positive
and two negative eigenvalues (See Figure 4). In this interval the origin becomes unstable,
the trajectories move away and tend to limit attractor cycles.

Figure 4. For c = 20 (left) and c = 7 (right), the orbits tend to two limit cycles of attraction.

4.9. Hopf Bifurcation in the Origin.

L3 = L1 ∗L2;ad = (a−ac)(a+1)⇒ c =
a−d +1

a+1
= c∗ (10)

Hopf bifurcation occurs when c = 0.95455 and the eigenvalues are λ1 = - 8/3, λ2 =
0.67420 i, λ3 = - 0.67420 i, λ4 = - 11 (See Figure 2).

4.10. Scenarios Presented by the Lorenz 4D System by Varying the Parameter c

The system (5) muestra diferentes hiper-atractores extraños de Lorenz, shows different
strange Lorenz hypertractors, with fixed parameters a = 10, b = 8/3, d = 0.5 and the
parameter c variable. For c = 21,22,35,40 the origin is unstable, all the orbits move away
from the origin and tend to two limiting attractor cycles (See Figures 5 and 6).

Figure 5. Display of the Lorenz Hyperattractor 4D: in c = 21 (left), in c=22 (right)
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Figure 6. Display of the Lorenz Hyperattractor 4D: in c = 35 (left), in c=40 (right)

5. Conclusions

The AutonomousSystems4D, package allows qualitative analysis of ordinary non-linear
differential equation systems in four dimensions, as well as visualization of phase sur-
faces. As a case study applied to the new Lorenz 4D System, sensitivity was found in the
initial conditions, Lyapunov exponents, Kaplan Yorke dimension, a stable and unstable
critical point, limit cycle, Hopf bifurcation, and hyperattractors.
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[11] Velezmoro R, Ipanaqué R, & Mechato JA. A Mathematica Package for Visualizing Objects Inmersed
in R4. In International Conference on Computational Science and Its Applications (ICCSA). Springer,
Cham. 2019; 479-493.

E. Escobar et al. / An Octave Package to Perform Qualitative Analysis of Nonlinear Systems 145


