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Abstract. This paper presents the stabilization for positive nonlinear systems us-
ing polynomial fuzzy models. To conform better to the practical scenarios that sys-
tem states are not completely measurable, the static output feedback (SOF) control
strategy instead of the state feedback control method is employed to realize the sta-
bility and positivity of the positive polynomial fuzzy system (PPFS) with satisfy-
ing L1-induced performance. However, some troublesome problems in analysis and
control design will follow, such as the non-convex problem. Fortunately, by doing
mathematical tricks, the non-convex problem is skillfully dealt with. Furthermore,
the neglect of external disturbances may lead to a great negative impact on the per-
formance of positive systems. For the sake of guaranteeing the asymptotic stabil-
ity and positivity under the satisfaction of the optimal performance of the PPFS,
it is significant to take the L1-induced performance requirement into consideration
as well. In addition, a linear co-positive Lyapunov function is chosen so that the
positivity can be extracted well and the stability analysis becomes simple. By using
the sum of squares (SOS) technique, the convex stability and positivity conditions
in the form of SOS are derived. Eventually, for illustrating the advantages of the
proposed method, a simulation example is shown in the simulation section.

Keywords. positive polynomial fuzzy system (PPFS), static output feedback
(SOF), L1 performance, stability analysis, sum of squares (SOS)

1. Introduction

As a particular kind of systems, positive systems have attracted ever-increasing re-
searchers to conduct a deep-going research on the stability and positivity analysis. In
fact, a great number of practical systems in various disciplines, for instance, physiology
[1], communication networks [2] and biology [3] belong to positive systems because the
system states maintain in the positive quadrant with the non-negative initial conditions.
However, due to the special property of positive systems, a good deal of challenging and
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interesting problems cannot be coped with by employing some mature techniques for
general systems [4]. From this point, a series of elegant properties of positive systems
are worth studying and digging [5]. Hence, a growing number of researchers have shown
great interest in this research topic.

Up to now, many valuable research results have been obtained, which lay a good
foundation for future research on positive systems. In [6], the stability analysis for posi-
tive linear systems with time-varying delays was carried out. In [7], the authors designed
positive filters for positive systems to reduce the influence of the external disturbance.
It can be seen that most of existing results are for positive linear systems because the
system structures are simple, meanwhile, the controller design is easy to realize. Never-
theless, it is generally acknowledged that a lot of actual systems demonstrate nonlinear
characteristics rather than linear ones in practical applications. Because of the complex-
ity of positive nonlinear systems, some current results for positive linear systems cannot
be directly employed for positive nonlinear systems. Therefore, it is worth a try to study
the control synthesis for positive nonlinear systems.

Fuzzy-model-based control theory offers a systematic way to deal with analysis and
control synthesis for nonlinear systems. One of the well-known approaches is through
Takage-Sugeno (T-S) fuzzy model which is in the light of a set of fuzzy rules to express
a global nonlinear system [8]. With the further study of fuzzy theory, polynomial fuzzy
models have been put forward, comparing with T-S fuzzy models, this kind of fuzzy
models have many distinct merits. First of all, more complex and extensive nonlinear
systems are able to be handled by polynomial fuzzy models since not only constant terms
but also polynomials are permitted in the membership functions (MFs) as well as the
system matrices [9]. On the other hand, the imperfect premise matching (IPM) concept
and membership-function-dependent (MFD) analysis techniques have been proposed for
polynomial fuzzy-model-based control theory [10], which have obvious advantages than
parallel distributed compensation (PDC) scheme and membership-function-independent
(MFI) analysis technique. For instance, the fuzzy controllers can be designed flexibly
and implemented simplier. Besides, MFD analysis techniques are of great help to reduce
the conservativeness of the results. For all these reasons, using a polynomial fuzzy model
to handle complex nonlinear systems is a better way to facilitate the control synthesis
and stability analysis. However, positive polynomial fuzzy systems (PPFSs) have many
differences from the general systems, which means some significant results for general
polynomial fuzzy systems are difficult to be used for PPFSs [11]. Thereby, the controller
design and stabilization for PPFSs is a meaningful but challenging research topic.

In resent literature, a few results corresponding to control synthesis for the positive
systems have been provided. It is worth noting that these results are on the basis of state
feedback control strategy instead of static output feedback (SOF) control method. Nev-
ertheless, from the practical point of view, it makes more sense to design the SOF con-
trollers for PPFSs because this kind of controllers do not require full state information of
PPFSs, meanwhile, it is simple and money-saving to put into practice. In this regard, de-
signing SOF fuzzy controllers for PPFSs is more realistic and reasonable. Unfortunately,
some thorny problems will follow, for instance, non-convex terms usually are able to
exist in stability and positivity conditions [12]. Although some marture techniques have
been provided [13,14], these methods are just appropriate for genneral systems rather
than positive polynomial fuzzy systems. Due to this barrier, the obtained results based
on SOF control approach for PPFSs are relatively few. Considering the solution of non-

A. Meng et al. / Output Feedback Control Synthesis and Stabilization for PPFS136



convex problem for positive polynomial fuzzy systems, we have proposed a method to
transform non-convex terms into convex ones in [12], but the L1-induced performance
was not taken into consideration. It is well known that in engineering applications, some
practical systems are required to meet the performance requirements. Generally speak-
ing, L1 performance can better capture the positivity of PPFSs since L1-norm represents
the sum of the values of the components. Therefore, to accord with the practical scenar-
ios, L1 performance is considered as well so that the closed-loop PPFSs can satisfy the
stability and positivity under L1-induced performance requirement. Due to the introduc-
tion of L1 performance, the techniques given in [12] are not suitable for the new non-
convex problem in this paper. Looking for an appropriate approach to solve this issue
also is an inspiration for us to carry out this work.

2. Preliminaries

2.1. Notation

The monomial in x(t) = [x1(t), . . . ,xn(t)]T is defined as xd1
1 (t), . . . ,xdn

n (t), where dk, k ∈
{1, . . . ,n}, is a non-negative integer. The degree of a monomial is defined as d = ∑n

k=1 dk.
A polynomial p(x(t)) is shown as finite linear combination of monomials with real co-
efficients. If a polynomial p(x(t)) is able to be represented as p(x(t)) = ∑m

j=1 q j(x(t))2,
where m is a non-zero positive integer and q j(x(t)) is a polynomial for all j, we can draw
a conclusion that p(x(t)) ≥ 0 is a SOS. For a matrix N ∈ ℜm×n, where nrs denotes the
element located at the r-th row and s-th column. N � 0, N � 0, N � 0 and N ≺ 0 mean
that each element nrs is non-negative, positive, non-positive and negative, respectively.
Q(x) = diag(x1, . . . ,xn) means that Q(x) is a diagonal matrix with all of the diagonal
elements being x1, . . . ,xn.

2.2. Positive Polynomial Fuzzy Model

A p-rule positive polynomial fuzzy model is shown:

Rule i : IF f1(x(t)) is Mi
1 AND · · ·AND fΨ(x(t)) is Mi

Ψ

THEN

⎧⎨
⎩

ẋ(t) = Ai(x(t))x(t)+Bi(x(t))u(t)+Biω w̃(t),
z(t) = Ci(x(t))x(t)+Di(x(t))u(t)+Diω w̃(t),
y(t) = Ex(t)+Eω w̃(t),

(1)

where u(t) ∈ ℜm, w̃(t) ∈ ℜh, z(t) ∈ ℜq and y(t) ∈ ℜl are the system state vector, the
input vector, the disturbance signal, the measurement output and the controlled output,
respectively; Ai(x(t)), Bi(x(t)), Biω , Ci(x(t)), Di(x(t)), Diω , E and Eω are the system
matrices with appropriate dimensions.

The overall dynamics of the PPFS is introduced:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) =
p
∑

i=1
wi(x(t))

(
Ai(x(t))x(t)+Bi(x(t))u(t)+Biω w̃(t)

)
,

z(t) =
p
∑

i=1
wi(x(t))

(
Ci(x(t))x(t)+Di(x(t))u(t)+Diω w̃(t)

)
,

y(t) = Ex(t)+Eω w̃(t),

(2)
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where wi(x(t)) is the normalized grade of membership with satisfying ∑p
i=1 wi(x(t)) =

1,wi(x(t))≥ 0 ∀i.
In order to have a better understanding of positive systems, we give some definitions

and lemmas before designing the SOF polynomial fuzzy controller.

Definition 1 [15] A system is called a positive system if the corresponding trajectory
x(t)� 0 for all t ≥ 0 is held under the initial condition x(0) = x0 � 0.

Definition 2 [15] If the off-diagonal elements in matrix M are non-negative: mrs � 0,
r 	= s, then this matrix is a Metzler matrix.

Lemma 1 [16] System (2) is a positive system if Ai(x(t)) is a Metzler matrix, Bi(x(t))�
0, Biω � 0, Ci(x(t))� 0, Di(x(t))� 0, Diω � 0, E � 0 and Eω � 0.

2.3. Polynomial Fuzzy Controller Design

By using IPM technique, a c-rule SOF polynomial fuzzzy controller is designed:

Rule j : IF g1(y(t)) is N j
1 AND . . .AND gΩ(y(t)) is N j

Ω

THEN u(t) = K jy(t), (3)

where K j ∈ ℜm×l is the SOF gain to be determined.
Through recalling the expression of y(t), we have:

u(t) =
c

∑
j=1

m j(y(t))K jy(t) =
c

∑
j=1

m j(y(t))
(
K jEx(t)+K jEω w̃(t)

)
, (4)

where m j(y(t)) is the normalized grade of membership with satisfying ∑c
j=1 m j(y(t)) =

1,m j(y(t))≥ 0,∀ j.

Remark 1 It is worth noting that the IPM method is employed to design the SOF con-
troller because it can make the controller design more flexible and the implementation
cost more economical.

To simplify, t is omitted in the rest parts, which means x(t) and y(t) will be abbre-
viated as x and y, respectively.

3. Stability and Positivity Analysis under L1 Performance

In this section, we keep our mind on analyzing the stability and positivity for closed-loop
PPFSs with satisfying L1 performance index. A linear co-positive Lyapunov function is
chosen to promote the stability and positivity analysis. Meanwhile, convex SOS-based
conditions are derived by employing some useful techniques to solve non-convex terms.
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3.1. SOF Positive Polynomial Fuzzy Control Systems

In terms of the PPFS (2) and the SOF polynomial fuzzy controller (4), the SOF positive
polynomial fuzzy control system is obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =
p
∑

i=1

c
∑
j=1

wi(x)m j(y)
((

Ai(x)+Bi(x)K jE
)
x+

(
Biω +Bi(x)K jEω

)
w̃
)

=
p
∑

i=1

c
∑
j=1

wi(x)m j(y)
(

Ãi j(x)x+ B̃i j(x)w̃
)
,

z =
p
∑

i=1

c
∑
j=1

wi(x)m j(y)
((

Ci(x)+Di(x)K jE
)
x+

(
Diω +Di(x)K jEω

)
w̃
)

=
p
∑

i=1

c
∑
j=1

wi(x)m j(y)
(

C̃i j(x)x+ D̃i j(x)w̃
)
,

y = Ex+Eω w̃.

(5)

Remark 2 According to Lemma 1, the SOF positive polynomial fuzzy control system (5)
is a positive system if Ãi j(x) is a Metzler matrix, B̃i j(x) � 0, C̃i j(x) � 0, D̃i j(x) � 0,
E � 0, Eω � 0, for all i, j.

Next, the L1-induced performance is introduced to facilitate the analysis process.

Definition 3 [17] The system (5) can satisfy L1-induced performance at the level γ , if
the following inequality can be ensured with satisfying zero initial conditions

||z||L1 < γ||w̃||L1 , (6)

where γ is the optimal level to be determined.

3.2. Stability Analysis of SOF Positive Polynomial Fuzzy Control Systems

In order to better capture the positivity of the SOF positive polynomial fuzzy control sys-
tem (5), a linear co-positive Lyapunov function candidate [16] is employed to establish
some stability and positivity criteria:

V (t) = λ T x, (7)

where λ = [λ1, . . . ,λn]
T � 0 is a vector to be determined.

The V̇ (t) is given as follows:

V̇ (t) = λ T ẋ =
p

∑
i=1

c

∑
j=1

wi(x)m j(y)λ T
(

Ãi j(x)x+ B̃i j(x)w̃
)
. (8)

In the following, by recalling the definition (6), the L1 performance index is shown:

J =
∫ ∞

0
||z||L1 − γ||w̃||L1dt =

∫ ∞

0
||z||L1 − γ||w̃||L1 +V̇ −V̇ dt

=
∫ ∞

0

q

∑
k=1

z− γ
p

∑
k=1

w̃+V̇ dt −V (∞)+V (0)

=
∫ ∞

0
IT

1 z− γIT
2 w̃+V̇ dt −V (∞)+V (0), (9)
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where V (∞) is equal to 0 when t → ∞, meanwhile, the unitial condition V (0) is zero.
I1 ∈ ℜq and I2 ∈ ℜp are vectors with all of the elements being 1.

Therefore, taking the expressions of z and V̇ into (9), we have:

J =
∫ ∞

0
IT

1 z− γIT
2 w̃+V̇ dt

=
∫ ∞

0
IT

1

( p

∑
i=1

c

∑
j=1

wi(x)m j(y)
(
C̃i j(x)x+ D̃i j(x)w̃

))

− γIT
2 w̃+

p

∑
i=1

c

∑
j=1

wi(x)m j(y)λ T (Ãi j(x)x+ B̃i j(x)w̃
)
dt

=
∫ ∞

0

p

∑
i=1

c

∑
j=1

wi(x)m j(y)
((

IT
1 D̃i j(x)− γIT

2 +λ T B̃i j(x)
)
w̃

+
(
IT

1 C̃i j(x)+λ T Ãi j(x)
)
x
)

dt . (10)

In order to make it easier to explain , we define:

Q1i j(x) = IT
1 D̃i j(x)− γIT

2 +λ T B̃i j(x)

= IT
1
(
Diω +Di(x)K jEω

)− γIT
2 +λ T (Biω +Bi(x)K jEω

)
= IT

1 Diω +λ T Biω − γIT
2 +

(
IT

1 Di(x)+λ T Bi(x)
)
K jEω , (11)

Q2i j(x) = IT
1 C̃i j(x)+λ T Ãi j(x)

= IT
1
(
Ci(x)+Di(x)K jE

)
+λ T (Ai(x)+Bi(x)K jE

)
= IT

1 Ci(x)+λ T Ai(x)+
(
IT

1 Di(x)+λ T Bi(x)
)
K jE. (12)

From (10), it can be seen that J < 0 can be guaranteed by Q1i j(x)≺ 0 and Q2i j(x)≺
0 for all i and j. Regrettably, there are non-convex terms λ T Bi(x)K jEω and λ T Bi(x)K jE

in (11) and (12), respectively. Hence, our attention should be focused on transforming
the non-convex terms into convex ones in the following.

In accordance with (11) and (12), we find if IT
1 Di(x)+λ T Bi(x)� IT

m and K j ≺ 0 are
satisfied, the non-convex terms can be dealt with as:(

IT
1 Di(x)+λ T Bi(x)

)
K jEω � IT

mK jEω , (13)(
IT

1 Di(x)+λ T Bi(x)
)
K jE � IT

mK jE. (14)

where IT
m ∈ ℜm is a column vector with all the elements being 1:

Now, by introducing (13) and (14) into (11) and (12), respectively, the convex sta-
bility conditions are derived:

Q1i j(x) � IT
1 Diω +λ T Biω − γIT

2 + IT
mK jEω ≺ 0, (15)

Q2i j(x) � IT
1 Ci(x)+λ T Ai(x)+ IT

mK jE ≺ 0. (16)

After the above analysis, the non-convex problem has been addressed well. The
next task is to carry out the positivity analysis. By recalling Remark 2, the positivity
conditions should be as follows:
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Ai(x)+Bi(x)K jE is a Metzler, Biω +Bi(x)K jEω � 0,

Ci(x)+Di(x)K jE � 0, Diω +Di(x)K jEω � 0. (17)

In light of (17), it is worth noting that the positivity conditions are convex, therefore,
all convex stability and positivity conditions have been established. In the following, the
analyzed results are summarized in Theorem 1.

Theorem 1 Given that the positive polynomial fuzzy model (2) with satisfying Lemma
1 can guarantee the stability and positivity under L1-induced performance by the SOF
polynomial fuzzy controller (5) if there exist gain matrix K j ∈ ℜm×l , vector λ ∈ ℜn

and the optimal performance index γ such that the SOS-based positivity and stability
conditions are satisfied:

υT
(
airs(x)+bir(x)K jes

)
υ is SOS ∀ i, j,r 	= s; (18)

υT
(
biωrs +bir(x)K jeωs

)
υ is SOS ∀ i, j,r,s; (19)

υT
(
cirs(x)+dir(x)K jes

)
υ is SOS ∀ i, j,r,s; (20)

υT
(
diωrs +dir(x)K jeωs

)
υ is SOS ∀ i, j,r,s; (21)

ρT
(

diag
(
λ − ε1In

))
ρ is SOS; (22)

−σT
(

diag
(
IT

1 Diω +λ T Biω − γIT
2 + IT

mK jEω + ε2(x)I
T
h

))
σ is SOS ∀ i, j; (23)

−ρT
(

diag
(
IT

1 Ci(x)+λ T Ai(x)+ IT
mK jE+ ε3(x)I

T
n
))

ρ is SOS ∀ i, j; (24)

−υT
(
k jrs + ε4

)
υ is SOS ∀ j,r,s; (25)

μT
(
IT

1 Di(x)+λ T Bi(x)− IT
m
)
μ is SOS ∀ i. (26)

where γ is the optimal index to be determined. υ is a arbitrary scalar and ρ ∈ ℜn, σ ∈ ℜh

and μ ∈ℜm are arbitrary vectors independent of x and y; ε1 > 0 and ε4 > 0 are predefined
scalars and ε2(x)> 0 and ε3(x)> 0 for x 	= 0 are predefined scalar polynomials. airs(x),
biωrs, cirs(x) and diωrs are the r-th row and s-th column element in Ai(x), Biω , Ci(x)

and Diω , respectively. bir(x) and dir(x) are the r-th row vectors in Bi(x) and Di(x),
respectively. es and eωs are the s-th column vectors in E and Eω , respectively. k jrs is the
r-th row and s-th column element in K j to be determined.

Remark 3 From (18) to (21), these conditions are able to ensure the positivity of the
SOF positive polynomial fuzzy control systems. From (22) to (26), these conditions can
guarantee the stability with satisfying the L1 performance index.

Corollary 1 Given that the positive polynomial fuzzy model (2) with satisfying Lemma 1
can guarantee the stability and positivity under L1-induced performance by using PDC
technique to design the SOF polynomial fuzzy controller (5), if there exist gain matrix
K j ∈ ℜm×l , vector λ ∈ ℜn and the optimal performance index γ such that the SOS-based
positivity and stability conditions are satisfied:
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(22), (25)− (26)

υT
(
airs(x)+bir(x)Kies

)
υ is SOS ∀ i,r 	= s; (27)

υT
(
airs(x)+bir(x)K jes +a jrs(x)+b jr(x)Kies

)
υ is SOS ∀ i < j,r 	= s; (28)

υT
(
biωrs +bir(x)Kieωs

)
υ is SOS ∀ i,r,s; (29)

υT
(
biωrs +bir(x)K jeωs +b jωrs +b jr(x)Kieωs

)
υ is SOS ∀ i < j,r,s; (30)

υT
(
cirs(x)+dir(x)Kies

)
υ is SOS ∀ i,r,s; (31)

υT
(
cirs(x)+dir(x)K jes + c jrs(x)+d jr(x)Kies

)
υ is SOS ∀ i < j,r,s; (32)

υT
(
diωrs +dir(x)Kieωs

)
υ is SOS ∀ i,r,s; (33)

υT
(
diωrs +dir(x)K jeωs +d jωrs +d jr(x)Kieωs

)
υ is SOS ∀ i < j,r,s; (34)

−σT
(

diag
(
IT

1 Diω +λ T Biω − γIT
2 + IT

mKiEω + ε2(x)I
T
h

))
σ is SOS ∀ i; (35)

−σT
(

diag
(
IT

1 Diω +λ T Biω − γIT
2 + IT

mK jEω

+IT
1 D jω +λ T B jω − γIT

2 + IT
mKiEω + ε2(x)I

T
h

))
σ is SOS ∀ i < j (36)

−ρT
(

diag
(
IT

1 Ci(x)+λ T Ai(x)+ IT
mKiE+ ε3(x)I

T
n
))

ρ is SOS ∀ i; (37)

−ρT
(

diag
(
IT

1 Ci(x)+λ T Ai(x)+ IT
mK jE

+IT
1 C j(x)+λ T A j(x)+ IT

mKiE+ ε3(x)I
T
n
))

ρ is SOS ∀ i < j; (38)

Remark 4 In general, PDC technique is helpful to reduce the conservativeness, but there
are some limitations of using this technique. For example, it greatly reduces the flexibility
of controller design because PDC technique requires the polynomial fuzzy controller and
the polynomial fuzzy system share same fuzzy rules, which means both the number and
the type of the MFs should be same. Therefore, when the number and/or the type of the
MFs of the polynomial fuzzy system are large and/or complex, it becomes hard to design
and implement the polynomial fuzzy controller. Also, the MFI analysis is a source of
conservativeness. See [9,10] for further details of IPM concept and MFD analysis.

4. Simulation Example

4.1. Scenario

A positive polynomial fuzzy model with 3 fuzzy rules is presented:
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A1(x1) =

[
0.03 0.45+0.08x2

1
0.98 −1.13− x2

1 +0.13x1

]
,A2(x1) =

[
0.06 0.42+0.1x2

1
0.94 −1.25− x2

1 +0.26x1

]
,

A3(x1) =

[
0.08 0.39+0.16x2

1
0.62 −1.06− x2

1 +0.37x1

]
,B1 =

[
0.36
0.22

]
,B2 =

[
0.37
0.24

]
,B3 =

[
0.36
0.18

]
,

B1w =

[
1.12
1.18

]
,B2w =

[
1.13
1.16

]
,B3w =

[
1.16
1.14

]
,x = [x1 x2]

T , E = [1 0] , Eω = 1,

C1(x1) =
[

1.07 1.15+0.23x2
1
]
,C2(x1) =

[
1.05 1.18+0.15x2

1
]
,

C3(x1) =
[

1.14 1.2+0.17x2
1
]
,D1 =

[
0.35

]
,D2 =

[
0.26

]
,D3 =

[
0.14

]
,

D1ω =
[

1.24
]
,D2ω =

[
1.19

]
,D3ω =

[
1.05

]
.

Recalling the Lemma 1, it can be found that the open-loop PPFS is an positive
system since airs(x1) is non-negative, for i ∈ {1,2,3}, r 	= s, and all of elements in the
rest system matrices are non-negative. The disturbance signal is w̃(t) = βe−t |cos(2t)|,
where β = 1,2,3, respectively.

In order to cut down the complexity of the SOF controller design, we choose 2 fuzzy
rules for the SOF controller in this example. The MFs of the PPFS and the SOF controller
are same as the ones in [18]. Through setting ε1, ε2(x1), ε3(x1) and ε4 as 0.001, the
effectiveness of Theorem 1 is validated.

4.2. Feasibility Analysis

Fig. 1 and Figs. 2 to 4 show the time responses of x1 and x2 for the open-loop PPFS
and the closed-loop PPFS, repectively. From Fig. 1, we can see that under zero initial
condition, the open-loop PPFS is an unstable positive system because the time responses
of x1 and x2 keep moving in the positive quadrant but do not converge to 0. From Figs.
2 to 4, it can be seen that the closed-loop system becomes an asymptotically stable and
positive system since the time responses of x1 and x2 keep moving in the positive quad-
rant and converge to 0. Theorefore, it can be concluded that the designed SOF controller
can guarantee the unstable PPFS to be stable and positive with satisfying the optimal L1
performance on the basis of Theorem 1. Meanwhile, the obtained optimal performance
is γ = 1.959, the feedback gains are K1 =−3.0541, K2 =−3.0541. Furthermore, based
on the Corollary 1, the obtained optimal performance is γ = 1.956, the feedback gains
are obtained K1 =−3.0571, K2 =−3.0231, K3 =−3.0098.

In order to investigate how the disturbance signal influence the stability of the
closed-loop PPFS, we obtain different time responses of the states x1 and x2 when β is
chosen as β = 1,2,3, respectively. In terms of the Figs. 2 to 4, we come to the conclusion
that the stronger the disturbance signal, the slower the time response converges and the
bigger the amplitude gets.

In order to demonstrate the superiority of the method proposed in this paper, we
also compare it with another existing method in [19] and try to figure out the optimal
performance index γ . Before making a comparison, we need to set B1 = B2 = B3 =
[0.36;0.22] and keep the rest system matrices the same as the example above. That is
because the method proposed in [19] requires the input matrices Bi to be assumed to be
same for all i. The obtained performance indeces are γ = 2.455 and γ = 1.945 by using
the method in [19] and the method in this paper, respectively, which indicates that the
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Figure 1. Time responses of the states x1 and x2 for
the open-loop system.
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Figure 2. Time responses of the states x1 and x2 for
the closed-loop system when β = 1.
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Figure 3. Time responses of the states x1 and x2 for
the closed-loop system when β = 2.
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Figure 4. Time responses of the states x1 and x2 for
the closed-loop system when β = 3.

method in this paper can provide better performance. In addition, another advantage of
the method given in this paper over that one in [19] is that the manually chosen parameter
is removed so that the conservativeness of the results can be reduced through eliminating
the influence of human intervention.

5. Conclusion

In this paper, the positivity and stability analysis under L1-induced performance for SOF
PPFSs have been investigated. The SOF control approach has been employed to drive
unstable PPFSs to be asymptotically stable and positive. Through introducing some ex-
tra constrain conditions, the tricky non-convex problem has been addressed. It is worth
noting that this method has some merits than the method proposed in [19] since the man-
ually chosen parameter has been removed which means the relaxation of the results has
been improved by removing the human intervention factor. In addition, based on linear
co-positive Lyapunov stability thoery, the SOS-based stability conditions have been de-
rived. A simulation example has been given to illustrate the reliability and effectiveness
of the proposed theorem.

Considering that many dynamical systems are with both discrete and continuous
components in real systems [20,21], designing hybrid automata-based controllers for
positive systems will be an interesting and challenging research topic for our future work.
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