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Abstract. The DIVA (Directions Into Velocities of Articulators) model is an 
adaptive neural network model that is used to control the movement of the analog 
vocal tract to generate words, syllables, or phonemes. The input signal to the 
DIVA model is the EEG (electroencephalogram) signal acquired from the human 
brain. However, due to the influence of power frequency interference and other 
forms of noise, the input signal can be non-stationary and can also contain a 
variety of multi-form waveforms in its instantaneous structure. Input of such a 
signal into the DIVA model affects normal speech processing. Therefore, based on 
the concept of sparse decomposition, this paper applies and improves an adaptive 
sparse decomposition model for feature extraction of the general EEG signal 
structure and then uses the Matching Pursuit algorithm to compute the optimal 
atom. The original EEG signal can then be represented by atoms in a complete 
atomic library. This model removes noise from the EEG signal resulting in a better 
signal than the wavelet transform method. Finally, applies the EEG signal de-
noised by this model to DIAV model. Simulation results show that the method 
improves phonetic pronunciation greatly. 
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1. Introduction 

Research works on various fields (phonetics, control science, robotics, neural 

physiology) is required in order to accurately simulate and describe functions of brain 

regions responsible for speech acquisition and production based on neurophysiology and 

neuroanatomy. A new tool, called the Neuralynx System[1], developed by a team led by 

Frank Guenther of Boston University, is the most representative and successful among 

them. The primary feature of this tool is that users only need to think about what they 

want to express and the speech synthesis system converts their thoughts into speech. The 

principle is shown in Figure 1. 

In Figure 1, black circles and curved arrows represent neurons and axonal 

projections in the neural circuit for speech motor output, respectively. Signals collected 

from an electrode implanted in the subject's speech motor cortex are amplified and 

transmitted wirelessly across the scalp as FM radio signals. The signals are routed to an 

electrophysiology recording system for further amplification, analog-to-digital 
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conversion, and spike sorting. The sorted spikes are sent to a neural decoder which 

translates them into commands for a speech synthesizer. Audio signals from the 

synthesizer are fed back to the subject in real time (PrCG represents the precentral gyrus 

in the brain). 

 

Figure 1. Schematic diagram of Neuralynx System 

The Neuralynx System consists of two parts: brain computer interface (BCI) and 

speech synthesis system DIVA model (Directions Into Velocities of Articulators). BCI 

is used to achieve communication and control between a human brain and a computer 

or other electronic device. Input signal is generated from a permanently implanted 

wireless neural electrode in the cerebral cortex of an aphasia patient that detects 

generated speech and obtains neural signals from related areas [1, 2]. These signals 

drive the speech synthesis system to “operate” continuously and provide the patient with 

real-time speech output. The DIVA model is a biological neural network for generating 

and obtaining speech [3]. 

The EEG input signal acquisition process for the DIVA model includes 

conditioning, sampling, quantization, coding, and transmission. During this process, the 

EEG signal is non-stationary and can be corrupted by various forms of noise, 

particularly frequency interference. Input of such an EEG signal into the DIVA model 

would affect normal speech processing. Therefore, it is necessary to eliminate noise in 

the original EEG data. 

Current de-noising methods include notch filtering, adaptive filtering, and wavelet 

transform, to name a few. Notch filter leads to EEG waveform distortion [4]. The 

adaptive filter can automatically track the frequency change for power frequency 

interference and minimize the loss of useful information, but the frequency tracking 

range is narrow. The wavelet transform is the most widely used; however, it has 

drawbacks. For example, the calculation is complex and the choice of wavelet basis and 

wavelet threshold requires prior knowledge [5-6]. 

With this in mind, Mallat and Zhang proposed sparse decomposition [7] based on 

an over-complete dictionary. Based on signal characteristics, sparse signal 

decomposition can adaptively select the appropriate basis functions to complete signal 

decomposition. In this process, the over-complete dictionary plays a key role. This paper 

improves a construction method for an over-complete dictionary by analyzing the 

structural characteristics of EEG signals and using the matching pursuit algorithm [7, 8] 

(MP) for sparse decomposition followed by reconstitution. Following this process, the 

proposed algorithm enhances EEG signal sparsity, performs de-noising, and improves 
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the speech processing ability of the DIVA model. 

2. Diva Model  

The DIVA model is an adaptive neural network that describes the processes of speech 

acquisition and production and generates speech by controlling the simulated voice 

channel [9,10]. The model is based on behavioral data collected from physical 

experiments in speech generation and sensory psychology, neuroimaging fMRI data 

(functional magnetic resonance imaging) and PET (positron emission computed 

tomography) experiments, and neurophysiology data from motion control experiments 

in animals. The principle is shown in Figure 2[3]. 

As shown in Figure 2, the DIVA model consists of a feedforward control 

subsystem, a feedback control subsystem, and a simulated Maeda vocal tract. By 

recording the input speech formant frequency during training, the model generates a 

phonating rate and a time variable sequence that represents positional variations in vocal 

organs. The model uses this sequence to obtain the required phonations. The 

feedforward control system is responsible for speech production and the feedback 

control system is responsible for speech learning. In the feedforward control system, the 

generation of a phoneme or syllable begins with the activation of a corresponding cell 

speech map set. Each cell corresponds to a single phoneme or syllable. 

 

Figure 2. Working wireframes of DIVA model 

The DIVA model and fMRI are very closely linked [11]. Various assumptions 
made by the DIVA model can be tested and demonstrated by applying fMRI 
experiments. Data obtained from fMRI can also be analyzed and interpreted by the 
DIVA model. Thus, the DIVA model is a basic framework which can interpret speech 
neural processes. 

3. Sparse Signal Decomposition 

The primary aims of signal sparse decomposition are: (1) decompose the signal in the 

over-complete dictionary, (2) select the base function of the signal adaptively based on 

signal structural characteristics, and (3) compute correlation coefficients to have only a 

few non-zero values. Signal sparse decomposition has been successfully applied in 

many aspects of signal processing, such as signal detection, signal recognition, and 
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image de-noising. A variety of sparse decomposition algorithms have been developed: 

MP algorithm (Matching Pursuit) [7,8], BP algorithm (Basis Pursuit)[12], BOB 

algorithm (Basis Orthogonal Best) [13], and OMP algorithm[14] (Orthogonal Matching 

Pursuit). BP, and especially MP are the most commonly used. 

  

 

Figure 3. Schematic diagram of neuroanatomy mapping relation to the DIVA model 

3.1. MP Algorithm 

The Matching Pursuit algorithm (MP) is a signal analysis method that was proposed by 

Mallet and Zhang in 1993 and belongs to a category of greedy algorithms. 

The basic idea is to select the largest component of the correlation coefficients 

through decomposing the signal in the library (over-complete dictionary). The algorithm 

gets the sparse representation of the signal through multiple iterative decompositions 

[15,16]. Implementation of the algorithm can be described as follows: 

First, select an over-complete dictionary where D = {gr, r = 1,2, ..., M} represents 

such a collection. Elements of the collection are termed atoms. Each atom can 

adequately represent the characteristics of the signal. Maintain the over-complete feature 

amongst the atoms. The so-called overcompleteness is the inner product <gi,gj>≠0 

between two different atoms gi and gj, where i≠ j. 

The MP algorithm makes the inner product the largest between signal f and the 

atoms of the over-complete dictionary. This characteristic is regarded as the 

optimization principle of greedy algorithms [6]. 

First, select the best atom gi from dictionary D which satisfies the following 

condition: 

                                                (1)

where |<f,gi>| is the inner product between signal f and atom gi. 

After selecting gi, the signal f is decomposed as follows: 

                                              (2)

where <f, gi> is the projection of signal f onto the atom gi, and R1f is the residual 

value after projecting signal f onto gi (called residual error). 

Now, remove the atom gi from the initial over-complete dictionary because gi has 

been used as part of the signal f and will not be used to find the matching atom 

afterwards; this reduces the amount of computation. Decompose the residual error from 
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signal f and determine the best atom in the revised over-complete dictionary. The 

formula can be expressed as follows: 

                     
   

                 
(3) 

Of course, gk still needs to be determined as an optimum atom: 

                                        (4) 

After this iterative process, the signal f can be decomposed into: 

                    (5) 

Mallet proved that the value of ||RLf|| exponentially converges with increasing L. 

Thus, the signal f can be approximated by the following decomposition: 

   (6) 

The steps above are shown below in Figure 4: 

 
Figure 4. Flow diagram of MP algorithm 

3.2. Constructing the Over-complete Dictionary 

The Matching Pursuit algorithm decomposes the signal based on a complete library. 

Constructing the over-complete dictionary is the critical step[17]. This paper constructs 

a specific over-complete dictionary that would be applicable to EEG signals. 

As noted earlier, EEG signals are often corrupted by power frequency interference 

and other forms of noise during acquisition. This makes the EEG signal non-stationary 

and yields a variety of multi-form waveforms in its instantaneous structure. Thus, 

atomics of the single structure type are unable to match the transient EEG waveform 

effectively. In order to match multi-form waveforms in its instantaneous structure of 

EEG, the atomic dictionary should contain a variety of structural atoms. In order to 

extract the feature of EEG signal, reference [18] proposed an SSDM (Structure 
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Adaptive Sparse Decomposition Model) which is suitable for EEG signal in patients 

with psychomotor epilepsy. We studies and improves the SSDM model to extract the 

feature of EEG signal in normal people. The improved SSDM model aims to detect the 

spike wave automatically. From the view of matching multi-form waveforms in its 

instantaneous structure of EEG signal, improved SSDM model applies multi-structural 

atoms to adaptively depose and analyze the general EEG signal which is more suitable 

for detecting the instantaneous structure of EEG signal. General EEG signal consists of 

positive phase and negative phase. Small scale Gaussian function can match the single 

- phase spike wave well and large scale Gaussian function can represent the low 

frequency component of signal well. Moreover the Gaussian wavelet can match the 

double-phase spike wave well. We use Gaussian function and its first order derivative 

as the generating function to design a new multi-component dictionary which differs 

from the original SSDM model. 

  (7)

where K1(r), K2(r) are normalization factors that allow atoms to show the unitized 

norm,  are Gaussian functions and their first derivatives, and parameter 

set r={u, s} indicates location and scale characteristics of atoms, respectively. By using 

transforming methods such as panning and stretching, free variables u and s can be 

modulated to generate a series of atoms that form a variety of transient and redundant 

databases which can match the multi-constituent structure. 

In reality, free parameters must be sampled to form a discrete atom dictionary in 

order to sparsely decompose into a discrete digital signal. Discretized atoms may be 

expressed as: 

                                     (8)

where both p and i are integers, r={p, ai }, is the discrete set of 

parameters, and N is the dimension of discrete signals to be decomposed. Generally, a 

= 2 is desired. 

The atomic dictionary generated by this improved SSDM is complete and posses 

the invariance under translation in time and approximate invariance in scale. Moreover 

the numbers of atomic in improved SSDM are fewer than those in Gabor, which makes 

the improved SSDM have lower searching complexity and higher sparse decomposing 

efficiency. This improved SSDM model regard the Gaussian function and Gaussian 

wavelet as atomic dictionary generating functions which makes the atom structure 

match the separated instantaneous structure of general EEG signal more closely. 

In frequency analysis of the EEG signal, time-frequency structural parameters 

obtained after sparse decomposition should establish direct contact with the artificial 

vision analysis criteria. Comparing these time-frequency structural parameters with 

prior parameters can directly determine whether it is a characteristic EEG signal 
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waveform. The discrete atomic dictionary designed by this method has explicit 

morphological structure parameters, such as location, degree, and amplitude. 

4. Simulation Experiment 

4.1. De-noising Principle 

The signal can be separated into the original signal and the noise signal based on 

whether the correlation coefficient is zero after sparse decomposition. Suppose the 

original EEG signal with noise is: 

                    f = E + N                                  (9) 
where E is the original signal without noise and N is an independently distributed 

random noise signal. When applying the MP algorithm in the atomic dictionary, the 
dictionary is constructed based on the structural characteristics of the EEG signal. 
Therefore, atom structure must be related to the EEG signal, regardless of noise. The 
formula can be expressed as: 

                                      (10)
The first part of the equation is the original EEG signal and the second part is the 

residual after extracting the EEG signal, i.e., the noise signal. The equation can be 
compared with the formula: 

                                             (11) 

4.2. Experimental Process and Results Analysis 

4.2.1 Experimental Design and Signal Collection 

The following experimental data comes from the State Key Laboratory for Cognitive 

Neuroscience and Learning at Beijing Normal University, which is our collaboration 

unit. 

The subject is a healthy man with experience in EEG acquisition experiments. The 

experiment uses an electrical scanner and a scanning cap with 128 electrodes to record 

EEG signals (Figure 5). The sampling frequency of the signal is 1000 Hz. During the 

process of collecting the EEG signal, the subject’s consciousness was clear and he sat on 

an ordinary chair. The expression of the word “happy” in English was performed 100 

times. This experiment was completed in one day. 
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4.2.2 Experimental Tools 

Experimental evaluation uses the EEGlab Toolbox in MATLAB R2010b to read 

collected EEG signals. The EEGlab Toolbox is a tool for processing EEG data and 

reading the collected signal waveform. 

4.2.3 Pretreating Data 

While using the non-invasive acquisition method as described, EOG and muscular 

movement will degrade the signal. Prior to analyzing the EEG signal, we made use of 

the ICA (Independent Component Analysis) function in EEGlab to extract the main 

constituent of effective independence which can remove EOG and muscular movement 

from the original signal. 

 

Figure 5. Electrode locations on scanning cap 

4.2.4 Construction of SSDM Atom Dictionary and Signal Reconstruction 

In sparse decomposition theory, an atomic library has good structure when the following 

is satisfied: (1) the atomic dictionary contains the most atomic numbers and types 

possible in order to achieve sparse decomposition and a good sparse decomposition 

effect and (2) the atomic dictionary doesn't use similar atoms for both storage and 

computation. When these two criteria are maintained, a good balance is achieved and the 

structure of the atom dictionary is optimal. 

The atom dictionary described above can be used to obtain general atoms for use in 

sparse decomposition. Figure 6 is a shape schematic for two atoms in which atomic 

length is 1024. The figure shows concentrated energy in the central region and zero 

elsewhere. These are representative atoms. Results are consistent with previous work [7]. 

The following verifies the signal reconstruction effect using the SSDM atom 

dictionary and contrasts it with the Gabor dictionary. First, we intercept the normal EEG 

signal of the Chinese vowel /a/ after filtering through an EEG database provided by the 

Brain Research Center at Beijing Normal University. 

Figure 7(a) is a normal brain waveform of the Chinese vowel /a/, which is smooth 

under normal conditions. Figure 7(b) is the waveform graph of the Gabor atom 

reconstructed vowel /a/ and Figure 7(c) shows the result of the SSDM atom 

reconstructed vowel /a/.The decomposition and reconstruction of the EEG signal using 

the SSDM atom dictionary compares well with the Gabor atom dictionary. 
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Table 1. Time comparison of two dictionaries 

Atom dictionary Gabor SSDM 

Average time /s 218.32 120.76 

 

Since the morphological structure of the atom in SSDM matches each transient 

structure of the EEG signal more closely, atomic numbers are fewer in SSDM 

compared with those from the Gabor dictionary. Sparse decomposition efficiency is 

also improved in SSDM. Table 1 shows the average running time for the signal to 

reach the optimal result in both methods. Table 1 shows that calculation time is reduced 

and speed is greatly improved in SSDM. 

        
Figure 6. Shapes of two atoms in the SSDM dictionary (N = 1024) 

 

              
Figure 7(a). Brain waveform of Chinese vowel /a/    Figure 7(b). Gabor dictionary reconstructed result 

 

             
Figure 7(c). SSDM dictionary reconstructed result   Figure 8. Attenuation graphs of MMSE with an 

increasing numbers of atoms in 

the two atom libraries 
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4.2.5 Comparison of the Matching Pursuit Sparse Approximation Between the SSDM 

and Gabor 

In order to compare the performance of matching pursuit sparse approximation between 
the SSDM and Gabor, NMSE (normalized mean square error) is used. The formula is: 

                      

2

2

2

2

'

s

ss

NMSE





                         (12)

Figure 8 is the attenuation graphs of MMSE with an increasing numbers of atoms in 
the two atom libraries. It shows that the improved SSDM decays more quickly. Since 
the improved SSDM consists of multi-structure atoms which can match multi-form 
waveforms in its instantaneous structure of EEG signal, it owns stronger ability to sparse 
approximation. 

4.2.6 Comparison of the Signal De-noising Effect 

Using EEGlab, we can obtain whole pronunciation waveforms during the 2-cycle 
(Figure 9, provided by the Institute of Cognitive Neuroscience and Learning, Beijing 
Normal University). We intercept one pronunciation. Since the sampling frequency is 
1000 Hz and a pronounced duration is 2 sec, the signal has 2000 sampled points, as 
shown in Figure 10(a). We now add 50 Hz power frequency interference in which SNR 
(Signal to Noise Ratio) is 10 dB, 5 dB, -5 dB, and -10 dB, respectively, forming an 
original signal with noise. Figures 10(b), 10(c) and 10(d) are waveforms processed 
through the improved SSDM atom library, Gabor atom library and traditional wavelet 
transform method. It shows that the effect of de-noising based on the two atom libraries 
is better than wavelet transform method. Moreover the de-noising result of the SSAM is 
better compared to Gabor atom library. The wavelet transform removes effective 
constituents as noise. 

 
Figure 9. Disposing schematic diagram through EEGlab 
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 Figure 10(a). Received pronunciation of English word “happy”  Figure 10(b). SSDM atom library method 

         
Figure 10(c). Gabor atom library method          Figure 10(d). Wavelet transform method 

 

The waveform obtained through the SSDM atom library maintains the original 
waveform component better. In order to assess the three de-noising methods, we 
evaluate RMSE (Root Mean Square Error) and the effect of SNR. The formula is: 

   

              

                    (13)

where X1(n) is the input signal, X2(n) is the output signal, and N is the dimension of 
the signal. Table 2 shows the results of the comparison. SNR1 and RMSE1 are the 
Signal to Noise Ratio and Root Mean Square Error of the SSDM method. SNR2 and 
RMSE2 are for the Gabor method while SNR3 and RMSE3 are for the wavelet 
transform method. 

Table 2. SNR and RMSE for the SSDM,Gabor and wavelet transform methods. 

 SNR1 SNR2 SNR3 RMSE1 RMSE2 RMSE3 

10dB 18.9209 15.9281 14.1826 0.0015 0.0103 0.0181
5dB 20.7410 18.2377 15.1293 0.0014 0.0099 0.0192

-5dB 23.3201 22.3230 14.0291 0.0016 0.0143 0.0314
-10dB 18.4029 15.2915 16.1082 0.0025 0.0348 0.0532

 

Table 2 shows that to different intensity noise, the SNR of SSDM and Gabor 
improve compared with wavelet method. Furthermore, the RMSE of SSDM reduces 
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which means that the EEG signal recovered by SSDM is highly similar to the original 
EEG signal. Overall, the order of de-noising quality is: SSDM>Gabor>wavelet. 

4.3. Speech Processing Ability of the Improved DIVA Model 

4.3.1 DIVA Model Interface 

When applying the DIVA model to evaluate pronunciation function, the system presents 
a user interface to allow users to control the pronunciation mechanism as shown in 
Figure 11. The interface can be divided into three parts: control module, acoustic 
characterization space module, and vocal tract control module. 

 

Figure 11. User interface of DIVA model 

4.3.2 Flow Chart of DIVA Speech Sound Map Module 

Figure 12 shows a flowchart of the DIVA speech sound map module, which is part of 
the control module section in the DIVA model interface. During a simulation 
experiment, relevant information must be entered through this module and the input port 
parameters can be modified. 

 

Figure 12. Speech sound map module of DIVA model 
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4.3.3 Comparison of Result Precision 

We input speech learning samples of varying difficulty before de-noising and then enter 

the de-noised data into the DIVA model. Figure 13 shows comparative results of 

phonetic pronunciation accuracy in the model. Overall, speech pronunciation accuracy 

of the DIVA model increases when the de-noised signal is used compared to processing 

the signal with noise. For example, with normal difficulty speech learning samples 

containing noise, pronunciation accuracy is about 80% on average, while phonetic 

pronunciation accuracy can reach 90% after the signal is de-noised. Noise in the EEG 

signal affects the speech processing ability of the DIVA model. 

Besides, the experiment results show that the EEG signal de-noised by Gabor atom 

dictionary and wavelet can also improve speech pronunciation accuracy of the DIVA 

model. Since the noise reduction effect by these two methods is less than SSDM, the 

improved extent in speech pronunciation of the DIVA model is limited compared with 

the SSDM. Furthermore, atomic numbers are much more in Gabor than in SSDM 

dictionary which makes the de-nosing efficiency based on Gabor dictionary is lower 

than SSDM dictionary. 

 
Figure13. Comparative result of speech pronunciation accuracy percent between noisy and de-noised signal 

5 Conclusion 

This paper studies and improves an adaptive sparse decomposition model (SSDM) 
which is more suitable for the general EEG signal. Moreover, it applies the EEG signal 
de-noised by the improved SSDM to DIAV model. Simulation results show that the 
proposed method removes significant noise and is able to retain active components in 
the EEG signal. The de-noising effect is better. Meanwhile, the proposed algorithm 
improves speech pronunciation accuracy of the model by using a de-noised EEG signal 
for learning samples. This study provides a foundation to improve the speech processing 
capability of the DIVA model which can better describe and simulate related functions 
of brain regions involved in speech production and comprehension based on 
neuroanatomy and neuropsychology. 
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