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Abstract. Classical mereology is based on the assumption that any two underlap-
ping elements have a sum, yet there are many domains (such as manufacturing as-
semblies, molecular structure, gene sequences, and convex time intervals) in which
this assumption is not valid. In such domains, mereological sums must be connected
objects. However, there has been little work in providing an axiomatization of such
a mereology. Based on the observation that the underlying structures in these do-
mains are represented by graphs, we propose a new mereotopology that axioma-
tizes the connected induced subgraph containment ordering for a graph, and then
identify an axiomatization of the mereology that is a module of the mereotopology.
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1. Introduction

From its inception, research in mereology has been dominated by two presuppositions.
One has focused on what has come to be known as classical mereology, in which un-
derlapping elements have sums and overlapping elements have products. The other pre-
supposition, known as mereological monism, is based on the idea that there is a single
parthood relation that applies to all domains, whether they be spatial regions, temporal
intervals, physical objects, or activities.

More recently, mereological pluralism has been posited in [1, 2], in which there are
multiple distinct parthood relations for different classes of objects. Furthermore, there
are a wide variety of domains (such as manufacturing assemblies, molecular structure,
gene sequences, and time intervals) in which we need mereologies for connected sub-
structures, not arbitrary substructures. The problem is that existing mereologies (such
as classical extensional mereology) are too strong to represent connected substructures,
that is, they allow models in which disconnected elements have mere sums. We therefore
want to address the following challenge:

What is the mereology for connected substructures of a structure?
In designing an ontology, our objective is twofold – first, to prove that the models

of the ontology are actually the intended models, and second, to demonstrate that the
intended models do indeed formalize the ontological commitments. Our strategy is to
first specify a class of mathematical structures and show that the ontology axiomatizes
this class of structures (that is, there is a one-to-one correspondence between the class
of models of the ontology and the class of mathematical structures). We then specify
a representation theorem for this class of mathematical structures to demonstrate that
it formalizes the ontological commitments. The primary benefit of this strategy is that
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it makes explicit the modular organization of the subtheories of the ontology, thereby
highlighting how other ontologies are reused.

We therefore begin by presenting a series of motivating scenarios from diverse do-
mains in which the underlying structures are graphs, and we seek the mereologies for
connected induced subgraphs of these graphs. After showing that existing mereologies
are inadequate for capturing these scenarios, we propose new mereotopologies that ax-
iomatize the connected induced subgraph containment ordering for a graph. We then
identify the axiomatization of the mereology that is a subtheory of the mereotopology.

2. Motivating Scenarios

2.1. Assemblies and Components

A three leg table as shown in Figure 1(i) has a topological structure as seen in Figure 1(ii).
Table top a is connected to all the legs b, c, and d, while all the legs are disconnected
from each other. Connected components (e.g., a and b) can have sums that correspond
to subassemblies, while disconnected components (e.g., b and c) do not constitute sub-
assemblies, and hence do not have sums. The complete set of subassemblies for the table
is shown in Figure 1(iii). Similarly, for a picture frame, the bars a, b, c, and d topolog-
ically form a cyclic graph (see Figure 2). Bars a, c and bars b, d are not directly con-
nected, so there is no sum for each of these two pairs. The mereologies for these two
examples are shown in Figure 1(iv) and Figure 2(iv), and it is clear that these are not
classical mereologies.

Figure 1. Mereology on the components of a table.

Figure 2. Mereology on the components of a picture frame.
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2.2. Convex Time Intervals

Relations over temporal intervals have been foundational for qualitative temporal rea-
soning and representation. An early proposal for the axiomatization of an ontology of
time intervals was the work of van Benthem [3], in which there is one primitive ordering
relation and one primitive mereological relation over intervals. Notably, the intervals in
the models of this ontology are convex – every interval between two other subintervals
is also a subinterval1. In Figure 3(i), there is no interval that is the sum of intervals a and
c; although interval f is the least upper bound of a and c, it contains the interval b which
is disjoint from a and c. The mereology in Figure 3(ii) is not classical.
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f

e

(ii)

Figure 3. Mereology on convex time intervals.

2.3. Molecular Structure Ontology (MoSt)

MoSt [4] combines conventional graph theory and ontological approaches to describe
the shape of molecules. This ontology allows us to consider molecules from the shape
perspective by identifying basic functional groups of the ring and chain types, and to use
the axioms of the ontology to combine these functional groups together.

A skeleton in MoSt is the composition of one or more functional groups that are
attached together. Skeletons can be composed of other skeletons – they allow us to par-
tition the structure of molecules into various pieces, along with also combining pieces
together. Because we allow various decompositions of molecules, we also must permit
the notion that multiple skeletons can be formed from the combination of primitive func-
tional groups with other groups or other atoms. We introduce a parthood relation called
part(x,y) that outlines how two skeletons x and y are part of each other if and only if all
elements found inside one skeleton are also found in the other skeleton:

(∀x∀y (part(x,y)≡ (skeleton(x)∧ skeleton(y)∧∀z ((mol(z,x)⊃ mol(z,y))))))

This is exemplified with Figure 4, where s3 is composed of s1 and the skeleton for g3. We
can state that “s1 is part of s3.” We are again faced with the question: What mereology
corresponds to this definition of parthood?

1van Benthem recognizes the need to axiomatize convex intervals, but he does not provide an explicit ax-
iomatization of the mereology alone.
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Figure 4. Composition of the skeleton for ethyl acetate. g1, g2, g3, and g4 signify the primitive functional
groups, and s1, s2, s3, and s4 signify the skeletons, respectively. The primitive functional groups are connected
via the mol(x,y) relation using the dark, bolded black lines. Skeletons that contain functional groups are out-
lined in the dotted blue lines in the figure; for example, s2 consists of g3 and g4. Green dash-dotted lines show
parthood between skeletons.

2.4. Gene Sequences

A gene is a sequence of nucleotides that encodes the synthesis of proteins. A reading
frame is a way of dividing such a sequence of nucleotides into a set of consecutive, non-
overlapping triplets (shown in Figure 5(i)). We can therefore specify a mereology on gene
sequences; for example, given the sequence in Figure 5(ii), the containment ordering in
Figure 5(iii) is isomorphic to the mereology in Figure 5(iv).
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TA G C

ATG  CAA  TGG  GGA  AAT  ACC  AGG  TCC  GAA  CTT  ATT  GAG  GTA  AGA  CAG  ATT  TAA 
A TGC  AAT  GGG  GAA  ATA  CCA  GGT  CCG  AAC  TTA  TTG  AGG  TA A  GAC  AGA  TTT  AA 
AT  GCA  ATG  GGG  A AA  TAC  CAG  GTC  CGA  ACT  TAT  TGA  GGT  AAG  ACA  GAT  TTA  A 

(i)

Figure 5. Mereology on nucleotides in a gene sequence.
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3. Relationship to Existing Mereotopologies

Classical mereology is a formal theory of the part-whole relation [5]; in particular, it is a
theory which captures how parts can be combined to form wholes and how wholes can
be decomposed into parts. Pietruszczak [6] goes so far as to say that mereology arose
as a theory of sums. As posited by Fine [2] and Sider [7], the prevalent intuition is that
“a whole is a mere sum, or aggregate or fusion, formed from its parts without regard for
how they might fit together or be structured within a more comprehensive whole.” All
of this is captured by Tcm mereology

2, in which any pair of overlapping elements have a
product and any pair of underlapping elements has a sum (although the precise definition
of sum varies across different axiomatizations [5]).

Nevertheless, in domains such as manufacturing assembly, molecules, gene se-
quences, and convex time intervals, not all underlapping elements have sums. Thus, no
mereology that extends Tcm mereology can be used to represent the scenarios in Section 2.
It is clear that the mereologies we need in the motivating scenarios are not classical, since
sums do not exist for all pairs of elements in the mereologies of Figure 1, 3, and 5.

Simons [8] addresses this problem in his discussion of integral wholes. He correctly
notes that one commonality among all of the above scenarios is that the objects we are
considering must be connected. The assembled table is distinct from the set of tabletop
and legs scattered on the floor. A skeleton within a molecule must be connected – it never
consists of two disconnected functional groups within a molecule. Why not leave the
mereology to be classical and capture the notion of connectedness using mereotopology?
In fact, Whitehead proposed a nonclassical mereology (i.e., one in which not all pairs
of elements have sums) based on the notion of self-connected objects [8]. This approach
has been criticized in [9] from the perspective of attempting to define connection with
respect to parthood, but it was not considered as an independent mereotopological axiom.

In this paper, we are not proposing a mereology for all objects; for example, a mere-
ology of space needs to cover all spatial regions, and not be restricted to connected re-
gions. Instead, we are proposing a mereology that is satisfied by different specific classes
of entities, such as assembled physical objects, molecules, gene sequences, and convex
time intervals. Of course, there do exist objects for which sums are not connected; for
example, a bikini is an object whose parts are disconnected, and the United States is a
geographical entity whose parts are not connected. Indeed, this is the primary reason for
adopting mereological pluralism – not all classes of objects have the same parthood re-
lation satisfying equivalent axioms. For example, the parthood relation for convex time
intervals is distinct from the parthood relation for arbitrary time intervals; the latter can
be represented using a classical mereology, while the former cannot.

4. Semantic Requirements: Connected Induced Subgraph Structures

If we take a closer look at the motivating scenarios, we can get a sense of what require-
ments we need to impose on the models of the mereology that we need. We begin with the
observation that each of the motivating scenarios involves subgraphs of a simple graph.

Definition 1 A graph is a pair of sets G= 〈V,E〉 such that

2http://colore.oor.net/mereology/cm_mereology.clif
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1. E ⊆V ×V ;
2. E = E−;

G is simple iff I ∩E = /0. G is a graph with loops iff I ⊆ E.

In the case of assembled products, the underlying graph is the connection relation
between non-decomposable components; subassemblies correspond to subgraphs of the
graph that corresponds to the entire object. Molecules within the MoSt Ontology are
specified by a graph consisting of functional groups, and skeletons correspond to sub-
graphs of the graph of the entire molecule. With convex time intervals and gene se-
quences, we have the special class of path graphs, and each sequence forms another path
that is a subgraph of the entire graph.

Definition 2 Let H1 = 〈V1,E1〉 and H2 = 〈V2,E2〉 be simple graphs.
H2 is a subgraph of H1 (denoted by H2 ⊆H1) iff V2 ⊆V1 and E2 ⊆ E1.
H2 is an induced subgraph of H1 (denoted by H2 
H1) iff

• H2 is a subgraph of H1;
• For any x,y ∈V2, if (x,y) ∈ E1 then (x,y) ∈ E2.

The subgraph of H1 induced by a subset V ⊆V1 is denoted by H1[V ].

From the motivating scenarios, we can see that we are not interested in arbitrary
subgraphs of a graph H, but rather in subgraphs that are connected (as noted in [8]).
For example, the subassemblies of an assembled product are always considered to be
connected. Also, each gene forms a convex interval within the entire graph that represents
the genetic sequence. Within graphs, we can formalize connectedness as follows:

Definition 3 Let H= 〈V,E〉 be a simple graph.
H is a path iff V = x1, ...,xn and E = {(x0,x1), ...,(xn−1,xn)}.
H is connected iff for any two vertices x,y ∈ V , there exists an induced subgraph

that is a path containing x,y.

The motivating scenarios therefore lead us to focus on the set of connected induced
subgraphs of the simple graph H. It is easy to see that the induced subgraph relation is a
partial ordering on the set of all connected induced subgraphs of H, in which elements of
V are atoms (since they cannot have any nontrivial subgraphs). For example, in Figure 1,
the induced connected subgraph corresponding to the subassembly {a,c} is contained
in the connected induced subgraphs {a,b,c},{a,c,d}. We can also specify a topology
on the connected induced subgraphs of H. For example, in Figure 2, the subassemblies
{a,b} and {c,d} are disjoint as subgraphs, but are connected because (b,c),(a,d) ∈ E.

Definition 4 Let H= 〈V,E〉 be a simple graph, and suppose

• C (H) = {J : J
H, J connected};
• E (H)⊆ C (H)×C (H) such that (H1,H2) ∈ E (H) iff (V1 ×V2)∩E �= /0.

The connected induced subgraph structure of H is CH = 〈C (H),
,E (H)〉.
We can now specify the fundamental semantic requirement for the mereology we seek:
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The models of the mereology must be representable by the following class of struc-
tures: C= {CH : H ∈Msimple graph}.

The next challenge is to find an axiomatization that satisfies this requirement.

5. Using Mereotopologies for Connected Substructures

We can use theories from the Hcombined mereotopology Hierarchy3 of the Common Logic
Ontology REpository (COLORE)4 to characterize the mereologies that we are seeking.
In this section, we seek a deeper understanding of the properties of the connected induced
subgraph containment ordering CH for a simple graph H. Using these properties, we
define the class of intended models for the mereotopologies of connected subgraphs that
can be represented by such a containment ordering. Finally, we identify a theory in the
Hcombined mereotopology Hierarchy of COLORE that axiomatizes this class of structures.

5.1. Properties of CH

The crucial insight is that the set of connected induced subgraphs of a simple graph H

can be characterized by the relationships among the subgraphs. It is easy to see how CH

can be constructed from H – we simply extract all connected induced subgraphs, and the
containment and connection relations are already determined by their relationship to H.

Definition 5 For each K ∈ C (H), the set of subgraphs of the graph H that overlap a
given subgraph is denoted by O(K) = {J : K∩J �= /0, J ∈ C (H)}

For each K ∈ C (H), the set of subgraphs of the graph H that are connected a given
subgraph is denoted by N (K) = {J : (x,y) ∈ E,x ∈VJ ,y ∈VK , J ∈ C (H)}
The basic operation for constructing connected induced subgraphs is the following:

Definition 6 Let H1 = 〈V1,E1〉, H2 = 〈V2,E2〉, H3 = 〈V3,E3〉 be connected simple
graphs.

H1 is the sum of H2 and H2 (denoted by H1 =H2 +H3) iff

• H2 
H1;
• H3 
H1;
• H1 =H1[V2 ∪V3].

The key to the characterization theorem is to identify the properties that the set of
subgraphs must satisfy so that we can reconstruct H5.

Theorem 1 Suppose H is a simple graph.
Let C be a set of connected induced subgraphs of H, and suppose E ⊆ C ×C such

that (H1,H2) ∈ E iff (V1 ×V2)∩E �= /0.
〈C ,
,E 〉 is the connected induced subgraph structure of H iff the following condi-

tions are satisfied:

3http://colore.oor.net/combined_mereotopology
4http://colore.oor.net/
5The full version of this paper, containing proofs for all results, can be found at http://stl.mie.

utoronto.ca/publications/full_cisco.pdf
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1. Any two connected induced subgraphs of H are contained in another connected
induced subgraph: If H1,H2 ∈ C , then there exists H3 ∈ C such that

H1 
H3,H2 
H3

2. The containment ordering 
 is preserved by the combination of a graph and its
subgraphs: If H1,H2 ∈ C , then

H1 
H2 ⇔ H2 =H1 +H2

3. For any two subgraphs of H that are connected to each other, there exists a sub-
graph of H that is their sum: (H1,H2) ∈ E iff there exists H3 ∈ E such that

H3 =H1 +H2

4. The composition of two subgraphs is equal to the mereological and topological
sums of the subgraphs: If H1,H2,H3 ∈ C , then

H3 =H1 +H2 ⇔ O(H3) = O(H1)∪O(H2)

H3 =H1 +H2 ⇒ N (H3) = N (H1)∪N (H2)

5. Every connected induced subgraph of H can be decomposed into the sum of a
trivial subgraph and a connected induced subgraph: If H1 ∈ C , then there exists
H2,H3 ∈ C such that H2 ∼= K1 and

H1 =H2 +H3

A careful inspection of the structures in Figures 1(iii), 2(iii), 3(ii), and 5(iii) reveals
that each of them do indeed satisfy the conditions in Theorem 1, so that they are the
connected induced subgraph structures for their respective graphs. In other words, we
have the right set of structures to use as the basis for a representation theorem.

5.2. Mereographs for Connected Induced Subgraphs

What is the mereotopology that axiomatizes the connected induced subgraph structure
for a simple graph H?

5.2.1. Mereographs and the Mereotopology MT

We follow the work of [10] for the approach to mereotopology in which both parthood
and connection are primitive relations. The mereology of the parthood relation is rep-
resented by the class of partial orderings Mpartial ordering, and the connection relation is
represented by the class of graphs with loops Mgraph loops.

Definition 7 Suppose P ∈Mpartial ordering such that P= 〈V,
〉.
The upper set for x in P, denoted by UP(x), is

UP(x) = {y : x ≤ y} UP(X) =
⋃

x∈X

U(x)

LP = 〈V,E〉 is the lower bound graph for P: (x,y) ∈ E LP[x]∩LP[y] �= /0
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Definition 8 Suppose G ∈Mgraph loops, such that G= 〈V,E〉.
The neighbourhood of x in G, denoted by NG(x), is

NG(x) = {y : (x,y) ∈ E} NG(X) =
⋃

x∈X

NG(x)

A new class of mathematical structures was introduced by [10] to characterize the models
of mereotopological theories.

Definition 9 P⊕G= 〈V,E,≤〉 is a mereograph iff

1. P= 〈V,≤〉 such that P ∈Mpartial ordering;
2. G= 〈V,E〉 such that G ∈Mgraph loops;
3. UP(NG(x))⊆ NG(x), for each x ∈V .

Mmereograph denotes the class of mereographs.

In other words, a mereograph is the amalgamation of partial orderings and graphs with
loops, where Condition (3) constrains how these two structures are related to each other:
the neighbourhood of a vertex in the graph is closed under upper sets in the partial order-
ing. Consequently, mereographs are the right class of structures that we need:

Lemma 1 If H is a simple graph, then CH = 〈C (H),
,E 〉 is a mereograph.

The next question is to determine exactly what class of mereographs we need.

5.2.2. Connected Induced Subgraph Mereographs

Our goal is to specify the conditions that a mereograph must satisfy if it is to be repre-
sentable by CH. The approach we take is to “translate” the properties of CH (proven in
Theorem 1) into properties of mereographs.

Definition 10 Suppose
Σ(x,y) = {z : NL (P)[z] = NL (P)[x]∪NL (P)[y]}
Σ−1(x) = {(y,z) : Σ(y,z) = x}
Π(x,y) = {z : NG[z] = NG[x]∪NG[y]}

A mereograph P⊕G= 〈V,E,≤〉 is a connected induced subgraph mereograph iff

1. UP[x]∩UP[y] �= /0;
2. UP[x]⊆UP[y] iff L P(x)⊆ L P(y);
3. y ∈ NG[x] iff Σ(x,y) �= /0 for any x,y ∈V ;
4. Σ(x,y)⊆ Π(x,y), for any x,y ∈V ;
5. Σ−1(x)⊆ (A (P)×V ), where A (P) is the set of atoms in P.

Mcisco mt denotes the class of connected induced subgraph mereographs6.

6The name “cisco” is an acronym for “connected induced subgraph containment ordering.”
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5.2.3. Representation Theorems for Connected Induced Subgraphs

Now that we have defined the class of connected induced subgraph mereographs, we can
demonstrate that they are the correct set of structures by proving that they are indeed
representable by the connected induced subgraph structures of simple graphs.

Theorem 2 There is a bijection ϕ : Mcisco mt → C and an isomorphism
μ : P⊕G→ ϕ(P⊕G)

This constitutes the representation theorem for connected induced subgraph mere-
ographs. As such, it also provides a validation of this class of mereographs as the right
class of structures to be the intended models of the axiomatization of the mereotopology,
which we now consider.

5.3. Connected Sums of Subgraphs

The next step is to provide an axiomatization of the class of connected induced subgraph
mereographs. Before moving to the axiomatization of the mereotopology for connected
induced subgraphs, we briefly prove some properties of sums and the relationship to the
theory Tem mereology (Strong Supplementation) that we will need later in the paper.

5.3.1. Strong Supplementation and Properties of Sums

Classical mereology Tcm mereology
7 entails the existence of the sum of any two underlap-

ping elements. Although we are seeking a logical theory that is weaker than Tcm mereology,
we still need to adopt a definition for mereological sum. In classical mereology, there are
actually different axiomatizations for the mereological sum of two elements [11], but we
adopt the following:

Definition 11 Tsumde f is the definitional extension of Tm mereology with the sentence 8:

(∀x∀y∀z (sum(x,y,z)≡ (∀u (overlaps(u,z)≡ (overlaps(u,x)∨overlaps(u,y)))))) (1)

However, in the absence of the Tcm mereology, we cannot guarantee basic properties of
sums, such as functionality or its relationship to parthood. In fact, there is a close rela-
tionship between the Strong Supplementation Principle (axiomatized by Tem mereology

9),
the required properties of mereological sums, and weaker supplementation principles.

Proposition 1 Let Tsumpart be the extension of Tsumde f with the sentence 10:

(∀x∀y∀z (sum(x,y,z)⊃ part(x,z))) (2)

Tem mereology is logically equivalent to Tmm mereology
11 ∪Tsumpart .

Proof: http://colore.oor.net/mereology/theorems/sumpart/ �

7http://colore.oor.net/mereology/cm_mereology.clif
8http://colore.oor.net/mereology/definitions/sum.clif
9http://colore.oor.net/mereology/em_mereology.clif
10http://colore.oor.net/mereology/sumpart.clif
11Weak Supplementation Principle: http://colore.oor.net/mereology/mm_mereology.clif
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Proposition 2 Let Tsum f un be the extension of Tsumde f with the sentence 12:

(∀x∀y∀z∀u (sum(x,y,z)∧ sum(x,y,u)⊃ (z = u))) (3)

Tem mereology is logically equivalent to Tppp mm mereology
13 ∪Tsum f un.

Proof: http://colore.oor.net/mereology/theorems/sumfun/ �

Finally, we can show that the Strong Supplementation Principles is equivalent to the rela-
tionship between parthood and sums which corresponds to Condition (2) in Theorem 1:

Proposition 3 Tem mereology is logically equivalent14 to the extension of Tsumde f by:

(∀x∀y (part(x,y)≡ sum(x,y,y))) (4)

Proof: http://colore.oor.net/mereology/theorems/emsum/ �

This is interesting in the light of Fine’s notion of operationalism, in which the parthood
relation is defined in terms of composition operations like sums, rather than defining
sums in terms of the parthood relation.

5.3.2. Mereotopology of Connected Sums

The mereotopology we have been pursuing can be obtained by a rather straightforward
axiomatization15 of the conditions in the definition of Mcisco mt .

Definition 12 Tcisco mt is the extension16 of Tmt ∪Tem mereology ∪Tub mereology ∪Tsumde f

(∀x∀y (C(x,y)≡ (∃z (sum(x,y,z))))) (5)

(∀x∀y∀z (sum(x,y,z)⊃ (∀u (C(u,z)≡ (C(u,x)∨C(u,y)))))) (6)

(∀x∃y∃z (atom(y)∧ sum(y,z,x))) (7)

Tub mereology corresponds to Condition (1) in Definition 10, and by Proposition 3,
Tem mereology corresponds to Condition (2) in Definition 10. The remaining axioms in
Tcisco mt correspond to Conditions (3) to (5), respectively, in Definition 10.

Formalizing these correspondences gives us the following result, which is the veri-
fication of Tcisco mt , and shows that we have the correct set of axioms:

Theorem 3 There exists a bijection ϕ : Mod(Tcisco mt)→Mcisco mt such that

1. 〈x,y〉 ∈ CM iff y ∈ NG[x];
2. 〈x,y〉 ∈ partM iff x ∈ LP[y].
3. 〈x,y,z〉 ∈ sumM iff Σ(x,y) = {z};

12http://colore.oor.net/mereology/sumfun.clif
13Proper Parts Principle: http://colore.oor.net/mereology/ppp_mm_mereology.clif
14In [11], Varzi shows that Tem mereology entails the sentence in Proposition 3, but does not establish the

equivalence.
15Axiom (5) is equivalent to Simons’ [8] combination of axiom (TID8) from Tiles and (WD5) from White-

head.
16http://colore.oor.net/combined_mereotopology/cisco_mt.clif
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6. Weak Mereotopology of Connected Substructures

If we revisit the motivating scenario for molecular structure, then it appears that Tcisco mt
is too strong. In Figure 4, the functional groups g2,g3 are attached, yet there is no skeleton
that is the sum of these groups, and hence we do not have a connected induced subgraph
mereograph. On the other hand, the remaining conditions in Definition 10 are satisfied.
We therefore consider a generalization of the class of a connected induced subgraph
mereographs that can be used to capture mereotopologies such as the one in Figure 4. In
particular, Condition (3) in Definition 10 is weakened to allow the existence of connected
elements that do not have a sum:

Definition 13 A mereograph P⊕G = 〈V,E,≤〉 is a self-connected induced subgraph
mereograph iff

1. UP[x]∩UP[y] �= /0;
2. UP[x]⊆UP[y] iff L P(x)⊆ L P(y);
3. Σ(x,y) �= /0 implies y ∈ NG[x], for any x,y ∈V ;
4. Σ(x,y)⊆ Π(x,y), for any x,y ∈V ;
5. Σ−1(x)⊆ (A (P)×V ).

Mweak cisco mt denotes the class of self-connected induced subgraph mereographs.

Since this is a generalization of the class of connected induced subgraph mere-
ographs, we can also obtain a generalization of the representation theorem:

Theorem 4 There is a bijection ϕ : Mweak cisco mt → C and a monomorphism
μ : P⊕G→ ϕ(P⊕G)

that fixes A (P).

The key difference between Theorem 2 and Theorem 4 is that, because self-
connected induced subgraph mereographs allow connected elements that do not have
sums, they need not be isomorphic to a connected induced subgraph structure CH. How-
ever, there still needs to be a one-to-one correspondence between the vertices of the graph
H and the atoms of the partial ordering in the mereograph. Recalling the structure in
Figure 4, we can see that it is monomorphic to the connected induced subgraph structure
for the path graph P4.

The axiomatization of the mereotopology that we need for motivating scenarios such
as molecular structure in MoSt therefore only requires that sums are connected. The fol-
lowing result shows that this set of axioms does indeed provide the correct axiomatiza-
tion of the class of self-connected induced subgraph mereographs:

Theorem 5 Let Tweak cisco mt be the extension of Tmt ∪Tem mereology∪Tub mereology∪Tsumde f
with the following sentences17:

(∀x∀y∀z (sum(x,y,z)⊃ (∀u (C(u,z)≡ (C(u,x)∨C(u,y)))))) (8)

(∀x∃y∃z (atom(y)∧ sum(y,z,x))) (9)

(∀x∀y (sum(x,y,z)⊃C(x,y))) (10)

17http://colore.oor.net/combined_mereotopology/weak_cisco_mt.clif
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There exists a bijection ϕ : Mod(Tweak cisco mt)→Mweak cisco mt such that

1. (x,y) ∈ CM iff y ∈ NG[x];
2. (x,y) ∈ partM iff x ∈ LP[y].

Tweak cisco mt is closely related to the notion of self-connected objects:

Proposition 4 If Tscde f is the extension of Temt ∪Tsumde f with

(∀x (SC(x)≡ (∀y∀z (sum(y,z,x)⊃C(y,z))))) (11)

then Tweak cisco mt ∪Tscde f |= (∀x)SC(x).

7. Mereology of Connected Subgraphs of a Graph

Up to this point, we have characterized the mereotopology that corresponds to the con-
nected induced subgraph containment ordering for a graph. However, the axiomatiza-
tion in Tcisco mt uses the combined signature of mereology and topology. In this section,
we identify an axiomatization of the connected induced subgraph containment ordering
using only the signature of mereology, and show that such an axiomatization forms a
module of Tcisco mt . This allows us to speak of the mereology of connected subgraphs of
a graph.

7.1. Subgraph Containment Lattices

Remarkably, the problem of characterizing the class of posets which are isomorphic to
the connected induced subgraph containment ordering of a graph has been posed and
solved within the mathematics community [12–15]. If we re-examine the mereologies
for the motivating scenarios, we see that they satisfy the following definition:

Definition 14 A partial ordering P= 〈V,≤〉 is properly semimodular iff

1. P is atom-height, that is, the cardinality of all maximal chains in P is equal to the
cardinality of the set of atoms in P;

2. for each x ∈V , 〈UP[x],≤〉 is an upper semimodular lattice:
(a) any two elements y,z have a least upper bound and a greatest lower bound

in UP[x];
(b) if z covers the greatest lower bound of z and y, then the least upper bound of

z and y covers y.

Mproper semimodular denotes the class of properly semimodular partial orderings.

The central theorem shows that the class of properly semimodular partial orderings is
equivalent to the connected induced subgraph ordering for a simple graph H:

Theorem 6 Let H= 〈V,E〉 be a simple graph, and let P= 〈V,≤〉 be a partial ordering.
P∼= 〈C (H),
〉 iff P ∈Mproper semimodular

Moreover, this suggests that we can axiomatize the class of connected induced subgraph
orderings by axiomatizing the class of properly semimodular partial orderings.
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7.2. Introducing Tcisco

Using Theorem 6, we can specify a logical theory within the Hmereology Hierarchy of
COLORE that is logically synonymous with the class of properly upper semimodular
partial orderings.

Theorem 7 Let Tcisco be the extension of Tem mereology with the sentences18:

(∀u∀x (ppart(u,x)⊃ (∃y (atom(y)∧ part(y,x))))) (12)

(∀x∀y (covers(x,y)⊃ (∃z (atom(z)∧ ppart(z,x)∧¬part(z,y))))) (13)

(∀x∀y∀z∀u ((covers(x,y)∧atom(z)∧ ppart(z,x)∧¬part(z,y)
∧atom(u)∧ ppart(u,x)∧¬part(u,y))⊃ (z = u))) (14)

(∀x∀a∀b ((part(x,a)∧ part(x,b))
⊃ (∃z (part(x,z)∧ (∀u (part(z,u)≡ (part(a,u)∧ part(b,u)))))))) (15)

(∀x∀a∀b ((part(x,a)∧ part(x,b))
⊃ (∃z (part(x,z)∧ (∀u ((part(u,z)≡ (part(u,a)∧ part(u,b))))))))) (16)

(∀p∀x∀y ((atom(p)∧ part(x,y)∧¬part(p,y))
⊃ (∃z (part(x,z)∧ part(p,z)∧ part(y,z)∧ covers(z,y))))) (17)

There exists a bijection ϕ : Mod(Tcisco)→Mproper semimodular such that
(x,y) ∈ partM iff x ∈ LP[y]

Axioms 12, 13, and 14 guarantee that the mereology is atom-height (condition (1) of
Definition 14). Axioms 15, 16, and 17 guarantee that the upper set of each element in the
mereology is an upper semimodular lattice (Condition (2) of Definition 14).

Theorem 8 For any P ∈Mcisco there exists a unique G ∈Mgraph loops such that
P⊕G ∈Mcisco mt

This result shows that Tcisco mt is a conservative extension of Tcisco. Consequently, Tcisco is
indeed the mereology we seek – a new nonclassical mereology that applies to the classes
of objects seen in the motivating scenarios of Section 2.

8. Summary

We began this paper with the observation that classical mereology is not appropriate for
certain classes of objects, such as assemblies, convex time intervals, molecules, gene
sequences, because sums do not exist for every pair of such elements. This launched the
quest for exactly what mereology corresponds to the parthood relation for such objects.

18http://colore.oor.net/mereology/cisco.clif
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A key insight is that the underlying structure that specifies an object in each of
the motivating scenarios is a graph, and all parts of the object correspond to connected
induced subgraphs of that graph. We therefore introduced the parthood and connection
structure on the set of connected induced subgraphs of a graph and used this as the basis
of the representation theorem for a new mereotopology, Tcisco mt . Finally, we specified
the axiomatization of the nonclassical mereology Tcisco, which is the mereology that is
conservatively extended by Tcisco mt .

In the mereotopology Tcisco mt , the sum of two elements exists iff they are connected.
We also introduced a weaker mereotopology Tweak cisco mt in which not all connected
elements have sums, although elements for which sums do exist must be connected. The
characterization of the mereology that is the module of Tweak cisco mt remains an open
question.

An additional area for future work is to explore the extensions of Tcisco that corre-
spond to special classes of graphs. For example, in the cases of convex time intervals
and gene sequences, the underlying graph is a path graph, and the resulting mereology
corresponds to a special class of lattices.
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