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Abstract. Functional relations such as containment or support have proven difficult
to formalize. Although previous efforts have attempted this using hybrids of sev-
eral theories, from mereology to temporal logic, we find that such purely symbolic
approaches do not account for the embodied nature of functional relations, i.e. that
they are used by embodied agents to describe fragments of a physical world. We
propose a formalism that combines descriptions of a high level of abstraction with
generative models that can be used to instantiate or recognize arrangements of ob-
jects and trajectories conforming to qualitative descriptions. The formalism gives
an account of how a qualitative description of a scene or arrangement of objects can
be converted into a quantitative description amenable to simulation, and how sim-
ulation results can be qualitatively interpreted. We use this to describe functional
relations between objects in terms of spatial arrangements, expectations on behav-
ior, and counterfactual expectations for when one of the participants is absent. Our
method is able to tackle important questions facing an agent operating in the world,
such as what would happen if an arrangement of objects is created and why. This
gives the agent a deeper understanding of functional relations, including what role
background objects, not explicitly asserted to participate in a functional relation
such as containment, play in enabling or hindering the relation from holding.

Keywords. image schemas, embodiment, simulation, linguistic semantics, ontological
analysis, formal ontology

1. Introduction: background and motivations

It is a fact universally acknowledged that an agent acting in a world must be in need of
understanding how that world works. In humans, such an understanding is grouped un-
der the label of commonsense, which includes aspects of intuitive physics and social be-
havior, and is acquired through one’s own or observed experience, sometimes explicitly
taught, but always sinking to an intuitive level that is hard to make explicit again. This
presents a challenge for the creation of artificial agents that would be able to operate in
the physical world in shared environments with humans. Commonsense turns out to be
very difficult to capture formally, and finding the right balance of expressive power ver-
sus tractability is an unresolved problem, even despite some recent successes of machine
learning in other AI domains. Perennial questions such as the utility of formal ontologies
for capturing commonsense everyday knowledge also remain open.
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Viewed abstractly, state of the art robot programming consists of following a script
which may contain branches for some failure situations. However, problems occur as
soon as events outside of the provided script occur. Consider, as an illustrative example,
the situation where a robot is tasked with making popcorn. A pot containing oil and some
corn kernels lies on a hot stove. Having grabbed a lid, the robot attempts to place it on the
pot, but drops it on the way. Unaware of the mistake, the robot carries on with the next
step, waiting for three minutes while the popcorn cooks. Anyone having encountered
popcorn before can already tell what is wrong with this scene. A failure handling routine
to detect and regrab a dropped lid would address only a symptom, not the root of the
problem, which is that the robot cannot leverage knowledge about the causal structure
of the world into mechanisms to detect and repair failures as such failures arise.

Our paper aims at addressing one of the parts needed to computationally implement
such an ability: the need to represent practical world knowledge such that it is transfer-
able between situations. To this end, one needs formal theories of functional relations
and causal laws at a level that abstracts away from ‘irrelevant’ particulars, i.e. some qual-
itative descriptions of categories of scenes and causal laws. However, knowledge must
also be grounded in procedures that can instantiate or recognize the instantiation of some
general, qualitative pattern into a particular scene or arrangement of objects.

To bridge between these levels of abstraction, we draw on a formalisation of the no-
tion of image schemas developed within cognitive linguistics (e.g., Johnson, Talmy [1,2])
and ontological formalizations pursued by Hedblom and others [3]. Image schemas are
a plausible inventory of preconceptual building blocks of cognition, and can be used to
describe functional relations between objects, i.e. relations whose applicability depends
on the ability of objects to support certain behaviors, such as one object ‘containing’ an-
other [4,5]. Such relations offer a useful level of description for characterizing expected
or required participant behaviors and we formalize them by augmenting our ontologi-
cal accounts with logical theories qualitatively describing spatial arrangements, expecta-
tions on behavior, as well as counterfactual expectations should required participants be
absent. Formalizing appropriate levels of abstraction between generalized schemas and
actual characterisation of physical locations and movements in the world (or in a sim-
ulation) allows us to define and address some core competency questions that an agent
must engage with when acting in a changeable world: “what would happen if?”, “why
did something happen?”, and “how can some state of affairs be brought about/avoided?”
Being able to provide appropriate responses to such questions is a significant indication
of an agent’s understanding of the world in which it finds itself.

2. Background: Image Schemas

An image schema is defined by Johnson [1, p. xiv] as: “a recurring dynamic pattern of
our perceptual interactions and motor programs that gives coherence and structure to our
experience”. Image schemas have attracted much attention in cognitive linguistics, and
are thought to be involved in mental processes including metaphor construction and con-
cept invention. Several authors have proposed lists of image schemas, with significant
overlap among them; it thus seems likely that the number of image schemas in a com-
plete inventory should not be very large. Nevertheless, until recently, formalizations of
image schemas as theories amenable to computational implementation have been scarce.
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This has now been addressed by Hedblom, Kutz, Neuhaus [3], and Hedblom, Kutz,
Mossakowski and Neuhaus [6], who propose a first-order logic axiomatization of image
schemas. This formalization has been used to explore both concept blending [7] and con-
cept invention [8]. There remains, however, considerable work to be done towards de-
veloping a fully satisfying formal treatment. Firstly, we believe there are several require-
ments that current formalizations do not meet. At least some form of non-monotonic
reasoning is needed: e.g., a table ‘supports’ a cup in a different way than a rack would.
This raises questions concerning how best to distribute the various sources of knowledge
that would enable flexible descriptions. Tractability must also be a prime concern. The
difficulty of finding a formalism that can both answer commonsense reasoning problems
and be well-behaved computationally is discussed by Davis [9].

Secondly, a purely logical model of image schemas appears to miss crucial prop-
erties that led originally to their very proposal. As defined by Johnson, image schemas
capture patterns of embodied experience but, without proper grounding, logical models
remain empty symbols. Geometric or physical concerns must enter into descriptions of
image schemas but are awkward to capture using first-order logical machinery. E.g., in
the well-known egg cracking problem (Morgenstern [10]), despite relatively complex
axiomatization, only a handful of material resilience levels are described. Simply put, a
purely logical approach uses the wrong tools for the job precisely because the critical
contributions of embodiment are not available.

Simulation may then be a more appropriate tool for capturing intuitions about im-
age schemas, but exhibits its own problems when used for commonsense reasoning; sur-
veys addressing this topic are given by Davis and Marcus [11,12,13]. Simulation alone
cannot answer basic questions such as what would be relevant to simulate. Reasoning
is required, which we consider best provided by a logical component of a schematic
description of the world in addition to any treatment in terms of simulations.

As a result, we propose the following requirements for a theory of image schemas;
these requirements are meant to cover logical, as well as grounding, aspects of the theory:

• Non-monotonicity: allow defaults and exceptions when describing how an image
schema would be instantiated in an arrangement of objects

• Well-foundedness: theories for schemas expressed in terms of simpler schemas,
according to some principles of decomposability

• Tractability: crucial for agents acting in the physical world; implies the need for
some sort of approximation or compromise in inferential power

• Correspondence to generative models: an image schema must be associated with
procedures by which an agent can create instances of the schema

• Correspondence to perception procedures by which instantiations of image
schemas can be recognized in an arrangement of objects.

We now detail our approach to formalizing image schema theories in a manner that is
in line with these requirements and illustrate how we can then use this formalization to
provide deepened understandings of the consequences of physical situations.

3. A Multi-stratal Ontological Treatment of Functional Relations

In this section we provide an overview of a pipeline for converting qualitative, underspec-
ified descriptions of object arrangements into fully quantitatively specified scenes that
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are amenable to simulation (section 3.1), and then converting the quantitative simulation
results back into qualitative descriptions of behavior (section 3.2). We argue that such a
pipeline establishes a powerful tool for constructing theories of functional relations us-
ing Containment and Support as examples; a more complete inventory of the functional
relations to be covered is specified in the GUM-Space ontology [5]. A purely logical the-
ory might suffice for ‘typical’ combinations of objects, but a one-size fits all formalized
approach is untenable when faced with the extreme variation and contingency of the real
world [14]. Such an account would not allow us to interrogate whether, e.g., containment
relations can actually hold between objects of widely varying shapes and sizes.

Simulation offers an additional reasoning mechanism well-suited for such geometric
or physical aspects [15]. Although we take to heart the arguments from Davis and Mar-
cus [12] against simulation, we find their perspective overstated. Human beings make
inferences about functional relations even in the presence of great uncertainty. People
expect their clothes to be in their luggage after a plane trip, even if they do not know how
the luggage moved and cannot simulate the clothes inside. It is also true that simulators
depend on having a physical model and that model may be inaccurate, unstable, or fail to
cover interesting physics (although in such technical regards, simulators are only getting
better). But embodied understanding of functional relations is not an either-or between
purely logical approaches and simulation; both have their place. An inference rule such
as “things in locked containers tend to stay there” would, for example, justify a traveller’s
conclusion that despite its unknown trajectory, the luggage still contains the clothes.

Of course, such a rule has many exceptions – e.g., if the container has holes bigger
than the contents. Attempting to formalize the entire complex of possible configurations
and their consequences as abstract rules is consequently both infeasible and unlikely to
cover new situations. In contrast, simulators encode knowledge about the physical world
in a very compact form. As an alternative reconciliation of the either-or case, therefore,
Bateman [14] discusses the need for allowing flexible selections of formalizations that
more appropriately and systematically distribute explanatory work across hybrid formal-
izations. This would allow logical theories to be used to specify simulated ‘introspec-
tion’ concerning physical arrangements, whose results may then be interpreted back into
propositions that can be reasoned with at the symbolic level. We detail the arrangement
and interpretation of such mental simulation experiments in the next two subsections.

3.1. “Scene generation”: From Qualitative Description to Fully Specified
Arrangements of Objects

We approach the general simulation specification task using image schemas, formalizing
these across several levels of abstraction. This allows us to ontologically characterize im-
age schemas not just in terms of interdependencies of logical theories sharing the same
formalism [3], but also in terms of the nature of the formalisms needed at each particular
level of abstraction. We then work towards full specifications, by which we mean a quan-
titative description in which shapes, coordinates, and physical properties of the objects
involved in a scene are given. The input for this process of refinement is a qualitative
description expressed in terms of functional or spatial relations between objects; this is
of necessity (and also usefully) comparatively underspecified; there are always several
ways to instantiate a qualitative description. Our process of refinement then operates by
relating information at each of the following levels of abstraction maintained.
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Functional relations are spatial relations between entities that also constrain behavior.
An inventory of functional relations is given by subconcepts of FunctionalSpatialModal-
ity from GUM-Space [5]. New to our account here is an explicit formalization of the Ex-
pectations a functional relation gives rise to, and counterfactual Expectations about what
would happen if some participant in the relation would be removed. We draw a distinc-
tion between expectation in a colloquial sense, and Expectation as a qualitative descrip-
tion of behavior conditional on an entity, as used in our formalization – that is, a collo-
quial expectation would be that popcorn is contained in the pot it cooks in; this comes
from cultural norms concerning how a well-performed cooking task unfolds. In contrast,
the formal Expectation that the containee remains in a container is part of our formal-
ization of the Containment relation, and is inferred as soon as a Containment relation is
asserted without requiring additional consultation of norms, tasks or contexts.

A theory template for a functional relation is a set of defeasible Horn clauses where
the terms are predicates parameterized by variables; a variable may appear as an argu-
ment for several predicates. To produce a theory for a functional relation holding between
particular objects, all variables must be consistently replaced by identifiers referring to
objects in some environment or entities from an ontology of spatial relations [5], result-
ing in a propositional defeasible logic theory. We select defeasible logic to account for
exceptional ways in which a functional relation may be brought about, and here we will
only consider inferences on the propositional theories resulting from instantiating tem-
plates. As a consequence, our system can reason about the consequences of statements
such as “the popcorn is in the pot” but, because of the exclusion of logical quantification,
does not consider statements such as “there exists something which contains the pop-
corn”. This limitation is imposed to enable a clear separation of concerns between our
system and more complex reasoners it may form a part of: our hybrid reasoning is a way
to check to what extent a collection of propositions describing relations between spe-
cific objects is physically feasible, and to extract information, on physical grounds, about
which other objects contribute to a relation, as described in our competency questions
section; we note here that inference for propositional defeasible logic lies in P-time [16].
A task planner would be interested additionally in existentially quantified statements,
e.g. whether there is some set of objects which can be arranged to obey a functional
specification, and may then use our system to check candidate object sets.

A fragment of an example theory template is shown for Support in Listing 1, where
⇒ denotes defeasible implication. The various predicates appearing on the righthand
side correspond to lower layers of schemas defined in subsequent paragraphs. Capital
single letters are variables that must be replaced when producing an instance of a theory,
and “constants”, i.e. parametrizations of predicates by entities from an ontology valid for
all instances, are given in quotation marks. A Default Expectation describes what should
happen when all participants are allowed to physically interact. A counterfactual Expec-
tation describes what should happen if one of the participants does not physically influ-
ence others. The descriptions of observed behavior, such as SpecificDirectionalDown,
will be presented in section 3.2.

Listing 1: Fragment of the theory template for Support

S u p p o r t (X,Y) ⇒ L o c a t i o n (X, Y, ‘ on ’ )
S u p p o r t (X,Y) ⇒ E x p e c t a t i o n ( D e f a u l t ( ) , S p e c i f i c D i r e c t i o n a l S t a y L e v e l (X,Y) )
S u p p o r t (X,Y) ⇒ E x p e c t a t i o n ( D i s a b l e d (Y) , S p e c i f i c D i r e c t i o n a l D o w n (X,Y) )
S u p p o r t (X,Y) ⇒ ¬S u p p o r t (Y,X)
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Spatial relations are schematic relations that constrain the placement of objects in terms
of geometric primitive relations, such as alignments, between their primitive features.
Theories for spatial relations are also instantiated from templates, and a theory of a spatial
relation holding between a collection of objects is a propositional defeasible logic theory.
An example theory template for Locations with spatial modality ‘on’ (cf. [5]) is given in
Listing 2.

Listing 2: Fragment of the theory template for Locations with spatial modality ‘on’

L o c a t i o n (X, Y, ’ on ’ ) ⇒
S u r f a c e C o n t a i n m e n t (

O b j e c t R e l a t i v e B o t t o m S u r f a c e (X) ,
W o r l d R e l a t i v e T o p S u r f a c e (Y) )

L o c a t i o n (X, Y, ’ on ’ ) ⇒
AxisAl ignment (

O b j e c t R e l a t i v e U p r i g h t (X) ,
W o r l d R e l a t i v e U p r i g h t (Y) )

L o c a t i o n (X, Y, ’ on ’ ) ⇒
¬L o c a t i o n (Y, X, ’ on ’ )

Instances of theories for spatial relations operating at a lower level of abstraction
often appear because a functional relation implies a spatial relation; e.g., the theory for
Support(cup, table) would imply Location(cup, table, ‘on’). We require that the param-
eters that can be accessed to create an instance for a spatial relation theory are constrained
by the entities mentioned at the more abstract level of the functional relation theory, and
the spatial relation must not depend on entities not mentioned at the more abstract level
– that is, the theory for Location(cup, table, ‘on’) must not reference some other object
apart from the cup and table. We impose this limit because otherwise we would effec-
tively have existential quantification, which we wish to avoid because of the separation
of concerns mentioned above, and to avoid combinatorial explosion.
Geometric primitive relations describe constraints on how geometric parts of objects
may be arranged. They are not formalized as logical theories but rather implemented as
numeric procedures to generate and filter a set of candidate placements using a probabil-
ity distribution on spatial configurations. This approach is standard in robotics for rep-
resenting regions; detailed presentations may be found, for example, in work describing
the Cognitive Robotics Abstract Machine [17,18] or Action Related Places [19]. One
feature of this approach is the ability to combine several constraints on object relative
placement under a uniform representation – thus, probability distributions corresponding
to different constraints, e.g., AxisAlignment and SurfaceContainment, can be combined
into a single distribution, corresponding to the conjunction of constraints.

As they occupy lower abstraction levels than spatial relations, geometric primitive
relations are typically invoked because they are implied by the theory of some spatial
relation; e.g., Location(cup, table, ‘on’) implies

AxisAlignment(Ob jectRelativeU pright(X),WorldRelativeU pright(Y ))

This means that the entities participating in a geometric primitive relation must be a
subset of the entities participating in the invoking spatial relation or their parts. The parts
are obtained by invoking the next lower level of abstraction of the geometric primitives
themselves, which are described next.
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Geometric primitives are specified in terms of procedures to convert a shape description
of an object into a representation of one of its parts or features. Examples include the
centroid of an object, its outer surface, or its length axis. Primitives may be object- or
world-relative, depending on which coordinate system they use. They can be determined
by geometry (e.g. a PCA analysis can identify a longest axis) or asserted by convention
(e.g. human objects are often designed with a particular direction intended as upright).

3.2. “Behavior interpretation”: from quantitative simulation results back to qualitative
descriptions

The behaviors we model currently as illustrative examples are represented by primitive
movements, which are movements that describe the motion of some trajector object rel-
ative to another object, the relatum; these are covered by relational spatial modalities
within the GUM-Space ontology [5]. In particular, the primitive movements we have
considered so far are the two GeneralDirectional modalities ‘Nearing’ and ‘Approach-
ing’, SpecificDirectional movements constrained to the vertical direction, and two fur-
ther movement descriptions defined for modeling convenience: RelativeMovement and
RelativeStillness.

We formalize primitive movements in terms of recognition procedures that take tra-
jectory data as input – i.e., the relative pose of the trajector to the relatum at different
time steps – and compute a cumulative cost over the duration of the input trajectory. The
cost measures to what extent the actually observed trajectory deviates from the specifi-
cation. This is not the same as deviating from some ideal trajectory, however. There is,
for example, no ideal trajectory for RelativeApproach; instead, displacements that move
the trajector away from the relatum are counted towards increasing the trajectory cost.
If and only if the cost exceeds a threshold value is the observed trajectory deemed not
to respect the primitive movement. The threshold is currently based on a fraction of the
sum of the lengths – i.e., the longest axes – of the participating objects. This fraction may
differ for different primitive movements, but currently we set it to a tenth of the sum of
lengths of the relatum and trajector. This might be finetuned by a number of methods.

In the section following we proceed to the competency questions relevant for the
new levels of formalization introduced and show how they can be computationally im-
plemented within our system, building on the levels of representation defined.

4. Competency questions enabled by a multi-layered schematic approach to

physics reasoning

To begin, we summarize our competency questions thus: “what would happen if?”, “why
did something happen?”, and “how can some state of affairs be brought about/avoided?”.
These questions seem very natural, but they hide several sources of complexity.

One important set of concerns involves just how far into the future do we push a
“what if?” question and how far into the past do we push a “why?” For the purposes
of formalization, we must be explicit about our horizons. Why-questions also pose the
problem of defining what counts as a cause. What-to-do questions are hard to solve in
general, because planning is complex; it is more plausible that what humans do is learn
routines which are appropriate to some class of situations, and to some degree adapt-
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able. Finally, the level of abstraction at which these questions should be answered needs
specification. For example, one can always analyse a cause in finer detail, assuming the
data is there but, very often, we do not seem to care in our activities about the motion of
many small component parts, and instead prefer high level descriptions. Fuller specifica-
tions of the competency questions at issue will now be listed, in each case showing how
answering them is implemented.

“What if” questions. These questions are understood here as taking a qualitative de-
scription of an arrangement of objects, e.g. a pot contains cooking popcorn, and out-
putting a qualitative description of how the arrangement would naturally behave, e.g.
the popcorn distances itself relative to the pot. Conversion from a qualitative description
to fully specified arrangements of objects, including coordinates and initial velocities,
proceeds down along the hierarchy of levels described in section 3.1 above.

As an example of a schematically described scene, let us consider:
Containment ( container=pot, containee=popcorn ).

The Containment schema is a functional relation, and so has a theory constraining both
the spatial placement of the entities and expectations on their behavior as suggested
above. The placement of the pot and popcorn is simply the spatial relation schema:

Location ( relatum=pot, locatum=popcorn, spatial modality=‘in’ )
which in turn further implies the following geometric primitive relation constraint:

VolumeContainment( big volume=InteriorCavity(pot), small volume=popcorn ).
The VolumeContainment primitive relation guides sampling for positioning pot and pop-
corn such that the relevant geometric parts (an interior cavity in the case of the pot, and
the popcorn itself) obey the volume containment constraint. A fully specified scene can
then be simulated, and the trajectories of objects analyzed to check correspondence to
the relevant movement schemas (cf. section 3.2).

An issue however appears at this second step: what schemas should be tested against
the trajectory data? And since schemas have multiple participants, how does one know
for which participants to do the test? This is related to the critique from Marcus and
Davis [12] that a simulation, on its own, does not offer guidance about how it should be
interpreted, or what objects or movements are significant. Indeed, the bare facts of an
activity may have many interpretations, and people appear to select such interpretations
based on an interpretive framework constructed from contextual expectations. Dropping
a cup means one thing in an argument, and another when bringing a drink.

To model such interpretive frameworks, we take the approach that a “what if” ques-
tion must itself specify the schemas to test for. In other words, what we understand as
a “what if” question is to check which, if any, of some qualitative expectations on the
behaviors of some objects will hold, assuming the objects are arranged to satisfy some
qualitative spatial constraints. The expectations to check are then built into the qualitative
description of the scene in terms of functional relations. In the pot and popcorn example
in the context of cooking, the Containment relation has, among others, the expectation:

Expectation ( condition=Default(), event=RelativeStillness( a=pot, b=popcorn ) ).
This guides the interpretation of the simulation by pinpointing just those objects and
movements that are relevant, and establishes a criterion to judge said movement. In this
case, some of the popcorn particles will actually escape the popcorn interior, thereby
violating the RelativeStillness expectation of Containment.
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Figure 1. “What if” example scenarios: can various arrangements of objects contain popcorn?

Further examples of such “what if” questions follow for illustration. These are
scenes involving pots, popcorn (which starts with some initial random velocity), lids,
balsa boards (very lightweight), and cups. Screenshots of some frames from simulations
relative to specific questions illustrative of the observed behaviors are shown in figure 1.

Question Scene specification Gloss of Result

“what if we tried to contain pop-
corn in a pot?”

Containment(pot, popcorn) containment fail:
popcorn flies out

“what if we tried to contain pop-
corn in a pot with a lid on top of
it?”

Containment(pot, popcorn),
Support(pot, lid)

ok

“what if we tried to contain pop-
corn in a pot with a light balsa
board on top of it?”

Containment(pot, popcorn),
Support(pot, balsa)

containment fail: popcorn flies
out; support fail: balsa board
does not stay level relative to pot

“what if we tried to contain pop-
corn in a pot with a light balsa
board on top of it, and a cup on
top of the balsa board?”

Containment(pot, popcorn),
Support(pot, balsa),
Support(balsa, cup)

ok

“Why” questions. These questions are understood here as attributing blame/credit to
objects in a scene for the observed non/compliance of observed behavior to qualitative
expectations placed on the scene by functional relations.

The approach we took to operationalize causality testing is interventionist [20,21]:
an object can only be credited for a behavior if, by removing the object’s influence from
the scene, the behavior is no longer observed. Removing an object’s influence means to
stop it from interacting physically with other objects; we do not remove the object be-
cause its presence may be necessary for qualitative behavioral specifications, i.e., move-
ment schemas, but we can readily prevent physical interactions. We refer to an object
without physical influence as a phantom. Note that phantoms pose no problem for the
simulator in terms of the physical consistency of the worlds created – they are simply
ignored when performing updates of the physical state.
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As an example of using phantom objects, let us consider two scenes, one in which we
have a pot with cooking popcorn inside and covered by a lid, and another scene in which
the pot is covered by a lid and contains a meditating pixie. In the former case, the popcorn
particles have just popped and fly out. In the latter case, the pixie is simply content to
levitate in place. The behavioral specification we are interested in for deriving potential
causes is the prevention of a relative distancing between the pot and the popcorn or pixie.
Obviously, both popcorn and pixie stay inside the pot if both the pot and lid are physically
active, which by virtue of their properties as solid objects prevent objects from passing
through. If, however, either pot or lid are phantoms, the popcorn will escape. In contrast,
making the lid a phantom will still not result in the pixie leaving the interior region of the
pot. Our system would then say that both the pot and the lid contribute towards keeping
the popcorn near the pot, but the lid is not the cause of the pixie remaining in the pot.

Thus, in our framework, a “why” question must specify some schematic behaviors
of interest, and a list of objects which may be responsible for those behaviors. Several
scenes are simulated, one default scene in which all objects participate physically, and
counterfactual scenes in which, in turn, one of the objects is turned into a phantom.
Further illustrative examples of “why” questions follow. Having observed compliance
(or not) to some functional specification of a scene in the previous section, we ask why
the observed behaviors happened.

Question Scene specification Gloss of Result

“when a lid is on the pot, why
does the popcorn stay inside the
pot?”

Containment(pot, popcorn),
Support(pot, lid)

both lid and pot are needed for
containment

“a balsa board is on the pot; why
does the balsa board fly off a pot
with popcorn in it?”

Containment(pot, popcorn),
Support(pot, balsa)

the popcorn is to blame, not the
pot

“a balsa board is on the pot, and
a cup is on the balsa board; why
does popcorn stay in the pot?”

Containment(pot, popcorn),
Support(pot, balsa),
Support(balsa, cup)

pot, balsa board, and cup are all
necessary for containment

Note that in the scenarios given, the containment relation is assured by interactions
between objects which at the qualitative level are not explicitly asserted to contribute
to the containment. This shows why adding a physical layer adds to the understanding
of a situation beyond what a purely symbolic and qualitative approach is capable of.
Some illustrative screenshots from simulations of ‘counterfactual’ scenarios are shown
in figure 2. ‘Phantom’ objects are distinguished by black colors and higher transparency.

“What to do” questions. While such questions suggest planning, planning is expensive
and in practice does not seem to be used often by humans. Instead, human beings learn
simple rules of action, e.g. “to prevent popcorn from flying out of a pot, cover the pot”.
Answering a “what to do” question becomes a process of checking which such action
rule might apply in a given situation, and what that might entail in terms of changes to
an arrangement of objects. The focus of this competency question therefore is not on
deliberation, but rather on the representational structure needed to know what are good
responses to some class of situations. How these responses are acquired is a separate
issue, for which we suspect pragmatic considerations are paramount. An agent might
learn from instruction, or from observation, or even by simulated or actual experiments
performed out of ‘curiosity’.
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Figure 2. “Why” example scenarios: to check which objects contribute to an observed behavior, what happens
when some objects have physical interactions disabled (marked by transparent black texture)?

To see how such a question could be answered, consider the example from the previ-
ous section of containing popcorn in a pot. Assume the following action rule: if an item
of type pot fails to contain some other item X, then place another item Y on the pot. The
�→ symbol means a transformation from a scene qualitatively described by the left side
to a scene qualitatively described by the right.

¬Containment(X , pot) �→Containment(X , pot)∧Support(Y, pot)

The rule antecedent, ¬ Containment(X , pot), can be asserted from prior knowledge or
observed from real or simulated scenes. Deciding what object to add to a scene requires
having a list of candidates to try out in simulation, e.g., small, manipulable items known
to exist in the kitchen. A candidate is successful if the expectations of the functional
relations are all met. Suppose then that possible candidates for Y are a cup, a plate, or a
balsa board. Of these, only the plate achieves the intended result; the cup falls in the pot
without stopping the popcorn; the balsa board is pushed off by the escaping popcorn.

Moreover, and as we have seen, combining items (e.g. the balsa board and the cup)
can help the pot achieve containment too. Searching for such combinations of scene mod-
ifications might be done in an iterative deepening fashion, where modifications involving
more objects are searched only if it is not possible to fix a scene with fewer items.

5. Related work

We refer to a recent survey by Davis and Marcus [22] for an overview of research into
commonsense reasoning. By and large, commonsense reasoning has been pursued by
way of attempting to construct either large repositories of facts – i.e., knowledge graphs
– or ontologies [23], or rich logical theories often involving mixed formalisms to cover
aspects such as time, geometry, topology [24]. Such logical approaches have been criti-
cized, often by their own proponents [25,9], on the grounds of requiring intractable or un-
decidable formalisms, or, as in [14], on the grounds of over-commitments causing them
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to need complex formalisms in the first place. Naturally, critiques of logical approaches
to commonsense inference have also been made on the same grounds as critiques against
purely symbolic approaches to AI in general [26,27].

A strong case can be made, however, that machine learning approaches fare no bet-
ter. Although deep learning can construct agents that master a specific game, such agents
do not have a conceptual understanding that would allow them to transfer their compe-
tence to even slightly modified versions of it (Kansky [28]). Kansky suggests “schema
networks”, a hybrid between a classical propositional logic and learning, as an approach
to remedy this, but it is not yet clear if they would scale beyond the worlds of very simple
Atari games. More complex sensorimotor concepts have been modelled as control poli-
cies or state estimation routines for partially observable Markov processes [29], but the
way these policies are learned depends strongly on a curriculum, suggesting that knowl-
edge of the concepts needs to be already formalized somewhere else, and in particular
the dependencies of complex sensorimotor concepts on simpler ones must be explicitly
known by whoever sets up the training protocol.

Spatial reasoning is also a very relevant area, comprising topics such as part-
hood [30] or region connectivity [31], quantitative reasoning about how a qualitative ar-
rangement might be instantiated [32], and linguistically-motivated ontological modelling
of spatial relations such as the GUM-Space ontology [5] or the theory of sense clus-
ters [33]. Spatial calculi are also applied in Hedblom et al.’s latest characterizations of
image schemas [34]. We have made considerable use throughout of previous work on im-
age schemas, originally proposed by Johnson [1] as remarked above. We view our work
as a continuation of the formalization attempts of Hedblom and others [3,6] in which
we combine a logical formalism with geometric and simulation techniques to provide
grounding for image schemas into generative models and recognition procedures. This
then extends previous accounts towards interaction with embodied simulation as well.

An ontological characterization of causal/causal-like relations between individual
occurrents has been provided by Galton [35]. On the practical side however, we have
chosen to follow the treatment of causation offered by Pearl [20], i.e. an interventionist
understanding of causation [21]: X can be a cause of Y if some change to X specifically
results in a change to Y. As a result, in this work we analyze causal relations by tracking
how particular modifications to a simulated scene alter the observed qualitative behavior.

6. Conclusions

An understanding of the physical world an agent is embodied in requires a hybrid for-
malism: one able to operate at a high level of abstraction, and hence generality, but also
account for physical and geometric aspects of the world. A difficulty in creating such a
hybrid is the tension between the need for underspecification when one aims for gen-
erally applicable knowledge, and the requirement for precisely quantified descriptions
usable by tools for modelling physical interactions, such as simulation.

We resolve this tension by taking inspiration from image schemas, which are in-
tended to be strongly related to embodied interactions as well as amenable to logical for-
malization. We propose a multi-layer formal approach, where each layer is characterized
by a different level of abstraction and modelling task. The most abstract level is that of
functional relations qualitatively describing expectations on object behavior and formal-
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ized in terms of spatial relations and primitive movements. These are described, at lower
levels of abstraction, via generative models to instantiate and recognize arrangements of
objects that satisfy a qualitative description.

We use our formal theories of functional relations to answer questions about object
arrangements, such as whether particular arrangements can enact a functional relation
and why (not), and show that our approach allows a deeper understanding of such func-
tional relations, including how background objects, not explicitly participating in the re-
lation, contribute to it. We have also sketched how our approach could be used to describe
response rules for an agent – what to do in particular situations in order to achieve some
qualitative goal – but we leave further developments in this direction for future work.
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