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Abstract. With the advent of social robots, precise accounts of an increasing number
of social phenomena are called for. Although the phenomenon of secrets is an
important part of everyday social situations, logical accounts of it can only be
found, in a rather strict sense, within logical investigations of systems security. This
paper is an attempt to formalize the logic of a commonsense notion of secrets as
a contribution to ontologies of social and epistemological phenomena. We take a
secret to be a five-way relation between a proposition, a group of secret-keepers, a
group of nescients, a condition of secrecy, and a time point. A bare-bones notion of
secrets is defined by providing necessary and sufficient conditions for said relation
to hold. Special classes of secrets are then identified by considering an assortment
of extra conditions. The logical language employed formalizes a classical account
of belief and intention, a theory of groups, and a novel notion of revealing. In such a
rich theory, interesting properties of secrets are proved.
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1. Introduction

Secrets come in all shapes and sizes: They can be classified military maps, family-
devastating incidences of spouse infidelity, critical credit card pin numbers, questions in
an exam, names of academy award winners, locations of treasures, sorcerous procedures
for invisibility, or embarrassing childhood mischiefs. Secrets are often hard to keep, yet
they are sometimes gratifying to be part of. They are catalysts for suspicion, but they
are also gauges of trust. Some secrets are a social necessity, and most are psychological
burdens [1,2,3].

The list of intuitions about and curiosities of secrets can go on and on. But we are not
concerned here with enumerating them, nor are we willing to analyze most of them. Our ob-
jective is more modest and more fundamental. For, while secrets are social/psychological
phenomena par excellence, they have an obscure ontological/epistemological flip side.
Guided by some foundational intuitions about secrets, we seek to arrive at a commonsense
theory of secrets which is precise enough to be amenable to logical analysis. Such logic
of secrets should be a necessary component of a logic-based artificial intelligence system
which is expected to competently engage in social interaction with people. In the near
future, social robots may be everywhere around us, assisting us at work, at hospitals, with
house chores, and granted the status of trusted life partners [4]. These robotic companions
should be capable of understanding what secrets are and of keeping our secrets.

As far as we know, studies of secrecy, within the logical tradition, are confined to
issues related to system security [5,6,7,8,9,10,11,12,13,14]. In such studies, a secret is
presented as a true piece of information about an agent/a system which is not known by

Formal Ontology in Information Systems
B. Brodaric and F. Neuhaus (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200662

77



a certain adversary group; the focus is mostly on identifying effective, and often subtle,
methods for keeping the secret. Several aspects of secrecy are not considered by these
studies. For example, there is no account of a secret keeper’s intention to keep the secret
(which is the defining characteristic of secrecy [3]), no investigation of what it means
for a secret to be revealed to someone (which does not, in general, effect knowledge or
belief), and no discussion of the possible relations among keepers of the same secret.

The paper is structured as follows. Section 2 discusses ten commonsense intuitions
about secrets and Section 3 motivates the novel notion of revelation. Section 4 presents a
logical language for reasoning about secrets. Section 5 includes a number of theorems
proved using the introduced logic. A typology of secrets is presented in Section 6. Finally,
Section 7 reviews related work.

2. Ten Intuitions About Secrets

We would like to start our investigation by drawing a distinction between secrets on one
hand and the objects of secrets on the other. That a particular military map is classified
is not, in general, an intrinsic property of the map itself [15]; rather, it is an extrinsic
property that the map acquires (possibly temporarily) by virtue of standing in a complex
relation to other entities, notably a secret keeper or a group thereof. Further, it is possible
that the same map is kept secret by General A from their spouse and, simultaneously and
independently, by General B from their own spouse. We would like to say that there are
two secrets here, both having the same map as their object, and that, for example, one
secret may be divulged and the other not. While English locutions such as “This map is a
secret” are common, a careful analysis of secrecy should not conflate secrets and their
objects. In particular, the existence of objects of secrecy is a necessary but an insufficient
condition for the existence of secrets. Henceforth, we shall refer to objects of secrecy as
“secreta” (plural of “secretum”) and shall take secrets to be relations between secreta and
other entities—this is our first intuition.1

I1. Secrets are distinct from secreta; they are relations between secreta and other
entities.

This, then, leads to the following question: What kind of entity can a secretum be?
It would seem that all sorts of beasts can be secreta: pin numbers, names of academy
award winners, military maps, recipes for invisibility, etc. We contend, however, that this
display of diversity is an artifact of the elliptical language we use to talk about secrets. It
is not, for example, the credit card pin number itself that is the secretum; the pin number
may happen to be the date of birth of the card owner who can write it down on a sheet of
paper, show it to everybody, and say that it is their birth date without thus revealing their
secret pin number. Rather, the secretum is the proposition that this number is the credit
card pin number. Similarly, prior to announcing the names of the academy award winners
in 2019, a name such as “Rami Malek” was by no means a secretum, the secretum was
the proposition that“Rami Malek” is the name of the winner of the Best Actor award.
Henceforth, we uphold the following intuition.2

1This is similar to distinguishing the object of an intention–an action, for instance–from the intention itself
which is a complex attitude an agent holds towards that object; likewise for belief and the object of belief.

2Some readers may be suspicious about I2 due to examples such as the classified military map, where it
makes sense for the responsible General A to physically hide the map itself from their spouse. While we agree
that hiding the map is indeed the right thing to do, we do not agree that this makes the map itself a secretum.
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I2. Secreta are propositions.

We now turn to the “entities”, referred to in I1, whose standing in some relation
to a secretum constitutes a secret. First, for a secret to exist, there must be some secret
keepers. It makes little sense to claim that there is a secret which no one is keeping. Mere
unawareness of a proposition or concealment thereof does not make it a secretum. For
example, before discovering that the earth is spheroid, no one was aware of this fact.
Nevertheless, it is hardly acceptable to claim that the earth’s roundness was a secretum at
that time, primarily because no one could keep it a secret since no one was aware of it in
the first place. Similarly, that raw gold is hidden within some mountain is no secret until
somebody discovers it and decides to keep it to themselves.

I3. For every secret, there is a group of secret keepers.

Not only do secrets require someone to keep them but they also require someone to
be kept from. A person who is cast away on a deserted island with no hope of getting
rescued cannot be said to be keeping any secrets simply because there is no one to hide
it from. This is so even though whatever happens to them on the island is completely
concealed from everyone. Hence, whenever there is a secret, there is a group from whom
the secret is kept; we refer to its members as nescients.

I4. For every secret, there is a group of nescients.

Now, let us clarify what we mean by “group” in I3 and I4. Each group is identified
by a group condition. At any point in time, the set of group members is the set of agents
satisfying the group condition at this time. An extensional group is one for which the
group condition is membership in a certain set. Since members of a set are fixed over
time, the members of an extensional group never change. An intensional group is a group
which is not extensional. (Extensional groups are similar to the “plural individuals” of
[16,17] or the “E-collectives” of [18]; intensional groups are the “groups” of [16,17] or
the “I-collectives” of [18]). Secret keepers and nescients could be of either group type.
For example, a crush on a high-school colleague is possibly a personal secret with an
extensional (singleton) group of secret keepers. On the other hand, an esoteric sorcerous
procedure for invisibility may be kept secret by an intensional group of sorcerers who
keep on handing it down for centuries across generations. In both examples, nescients
form the (extensional and, respectively, intensional) group which includes all those who
are not secret keepers. Extensional and intensional groups may be empty. An extensional
group is empty only if the corresponding set is empty. Such a (unique) group is necessarily
forever empty (NFE). An intensional group may become temporarily empty for a certain
period during which no one satisfies the group condition. If the group condition is such
that, starting at some time, it is necessarily the case that no one would ever satisfy its
condition, then this intensional group is also NFE. It is necessary for the existence of
secrets that the group of keepers is not NFE, but it may (if intensional) be temporarily
empty, and that the group of nescients is not believed to be NFE by any of the keepers.

Rather, the secretum is the proposition that the map is a map of some critical military site. The spouse’s finding
the map causes the revelation of the proposition that there is this strange map which, given the nature of the
Genaral’s work, may lead to the conclusion that it is a map of some military site.
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I5. Secret keepers and nescients form extensional or intensional groups. The group of
keepers is not necessarily forever empty and none of its members believe that the
group of nescients is necessarily forever empty.

Secrets are, in general, not eternal [19]. Most secrets are only kept so long as some
condition of secrecy holds. For example, as per the “Automatic Declassification Program”
in the United States of America,

Information appraised as having permanent historical value is automatically declas-
sified once it reaches 25 years of age unless an agency head has determined that it
falls within a narrow exemption that permits continued classification and it has been
appropriately approved. [20]

I6. A proposition is only a secretum as long as some condition of secrecy holds.

The condition of secrecy is a condition on the persistence of the keepers’ intention to
keep the secret. It often happens, however, that a secret is (accidentally or ill-intentionally)
exposed to a nescient when the condition of secrecy still holds. These are cases in which
the secret keepers fail to keep the secret. Compare, for example, between the natural
expiration of a secret exam, which happens when students sit for the exam, and its
premature exposure as a result of a malicious student’s gaining access to the professor’s
computer. Hence, secrets are temporary in the stronger sense that, regardless of the secrecy
condition, they may fail to be kept as long as intended.3

I7. Secrets are temporary.

Hence, we take secrets to be four-way relations which temporarily hold between a
secretum φ , a group K of secret keepers, a group N of nescients, and a condition C of
secrecy. Formally, we write Secret(φ ,K,N,C, t) to state that, at time t, proposition φ is
kept a secret by the group K from the group N while proposition C holds. Exactly what
conditions are necessary and sufficient for said relation to hold is what we now turn to.

First, in a genuine secrecy situation, all members of K believe φ [21] and C—
otherwise they will have no motivation for keeping φ a secret.

I8. Secret keepers believe both the secretum and the secrecy condition.

A possible objection to I8 is that people often confide their secrets to others [22]. For
example, x may inform y about their secretum φ and ask them to never reveal it to anybody.
While y may fail to believe φ , they, nevertheless, form the intention of never mentioning it
to anyone. Can we then say that the (extensional) group formed of x and y is keeping φ a
secret from everyone else? We do not think so. Note that y’s intention to never mention φ
to anyone may be based solely on their commitment to honesty; since y does not believe
φ , it would be deceptive to state it [23]. Thus, the situation here is indistinguishable from
one in which y is simply being honest; it would be awkward to claim that every time we
decide to not tell a lie we are keeping a secret. Even if y is generally dishonest, and are
more than willing to lie about φ , but they do not do it out of respect for x’s wishes, it is

3We follow [19] in taking “temporary” to qualify a phenomenon as being not necessarily permanent. Hence,
while secrets are, in general, temporary, some secrets may happen to be kept permenantly.
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still not plausible to claim that they are keeping φ a secret. We have all sorts of reasons
for not saying certain things (especially if we do not believe them); among other things,
we do it to be respectful, polite, suspenseful, and even spiteful. It is hardly acceptable
to claim that in all these situations we are keeping a secret.4 Notwithstanding the above
argument, we are not saying that y is not keeping any secrets here; y is indeed keeping a
secret, the secretum is not φ , but that φ is a secretum of x, which y indeed believes.

The second ingredient of the secrecy relation is that none of the secret keepers
believes that the secretum has been revealed to a nescient. If they do, they will have no
reason to continue keeping the secret.

I9. No secret keeper believes that the secretum has been revealed to a nescient.

There are at least two things to say about I9. First, sometimes a single nescient n
gets to know about φ . This often does not result in the secret keepers’ publicly disclosing
the secret; they may choose to continue keeping it from the rest of the nescients. This
is, however, not a counterexample to I9, for the secret has undergone a major change
following the revelation to n. In particular, thenceforth, the group of nescients has changed
into a group which does not contain n—resulting in a new secrecy relation. Second, I9

is necessary to rule out certain situations which would otherwise be, counter-intuitively,
counted as secrets. For example, n’s friends, aware of how much weight-conscious they
are, may decide, out of sheer courtesy, to never point out n’s recent, visible weight gain.
This is not a case of secrecy exactly because everyone knows that n is aware of the gain in
their weight. The final ingredient of secrecy, and the most fundamental [3], is the keepers’
intention to indeed keep the secret.

I10. Every secret keeper intends that the secretum is not revealed to a nescient as long
as the secrecy condition holds.

Independently-motivated properties of intention yield intuitive properties of secrets.
For example, according to [24], one cannot intend a proposition if they believe it to be
false. Thus, in normal circumstances, it would be futile to keep the name of the capital of
Georgia a secret since anybody can easily gain access to this public piece of information.5

In Section 4, we present a logical language in which we formalize the definition of
a secret with regards to the previously mentioned intuitions. First, however, we need to
elucidate the central notion of revelation.

3. Revelation

What does it mean for φ to be revealed to n? A prototypical revelation scenario is one
in which an agent A truthfully states the true proposition φ to n, who does not know φ ,
thereby resulting in n’s coming to believe φ . Not all instances of revelation, however, share
the features of this idealized situation. First, whereas typical uses of the English “reveal”
seem to indeed presuppose the truth of the revealed proposition [25], in our analysis of
secrets (particularly, I9 and I10), we do not want to assume that φ is true. Hence, the

4A parent, for example, may not want their young, gullible children to get exposed to some racist doctrines,
which the parent does not believe in, lest they may subconsciously adopt them. We would not say that such
doctrines are secrets of the parent but that they rather be kept unrevealed to their children.

5In abnormal circumstances, where the secret keeper can lock up the nescient and isolate them from the rest
of the world, such a secret would be possible.
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notion of revelation we need here does not carry this particular presupposition of the
English verb. Second, we would like to capture a notion of revelation which does not
assume that the revealer believes φ . Someone who is keeping φ a secret from n would
take their secret to have been divulged following A’s revelation, even if A does not believe
φ and is attempting to mislead n. Third, φ ’s being revealed to n need not necessarily
imply n’s believing φ . For example, consider a professor who is keeping the questions
of an exam secret from their students, but not from their assistant. Now suppose that the
assistant discloses the contents of the exam to a student. The student, however, does not
believe the assistant, thinking that they must be misleading them. In this situation, the
professor would still consider their secret to have been divulged and would, typically,
change the exam. Finally, in many cases, there is no agent A who reveals φ to n; mere
perception of a state of affairs by n may be sufficient for the revelation of φ .

We are, thus, left with a very weak notion of revelation: “φ is revealed to n” means
that n was somehow (possibly via perception) informed about φ . Revelation is not vacuous,
though; it is strictly stronger than mere awareness [26]. For example, prior to announcing
names of the academy award winners in 2019, everybody (who was interested) entertained,
and was thus aware, of the proposition that Rami Malek is the winner of the best actor
award; but this proposition was only revealed during the ceremonies. Thus, revelation is
strictly stronger than awareness but strictly weaker than belief. We propose to intuitively
construe φ ’s revelation to n as n’s having (positive) evidence for φ . This being said,
revelation is, thus, a special kind of modality. In particular, one can have evidence for
both φ and ¬φ ; hence, both propositions may be revealed. We take this intuition up more
seriously below by modeling revelation along the lines of the logic of evidence of [27].

4. Formalizing Secrets

To formalize secrets, we use a language LS based on (a fragment of) the language VEL
of [28], equipped with a special sort for groups, two normal modal operators for belief
and intention, and a non-normal modal operator, akin to the evidence operator of [27],
for revelation. Limitations of space allow us to only provide a sketch of the syntax and
semantics of LS.

LS is a sorted, first-order language with equality. In particular, there is a sort σA for
agent-denoting terms, a sort σG for group-denoting terms, and a sort σT for time-denoting
terms. A set of LS-atoms is generated in the usual way from countable sets of predicate
symbols, function symbols, and variables. A special function symbol [·] combines with a
term of sort σA to form a term of sort σG. Function symbols � and � form terms of sort
σG from pairs of σG terms. Intuitively, [A] denotes the extensional group comprised of
the single member denoted by A, G1 �G2 and G1 �G2 denote the groups whose sets of
members at any time are, respectively, the union and intersection of the sets of members
of G1 and G2. A special binary predicate symbol Mem forms an atom by combining with
terms of sorts σA and σG, respectively; intuitively, Mem(A,G) means that agent A is a
member of group G. Moreover, we have atoms of the form α = β (with the obvious
semantics), where α and β are of the same sort, atoms of the form t1 ≤ t2, where t1 and
t2 are of sort σT , which mean that time point t1 is no later than time point t2, and atoms
of the form AT (t) which mean that the time (of evaluation) is t. LS is the smallest set
of formulas generated by the following grammar (and respecting the signatures of the
predicate and function symbols).

φ := P | ¬φ | φ ∧φ | ∀x[φ ] | �φ | H(φ , t) | B(A,φ) | I(A,φ) | R(A,φ)
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where P is an atom, A is of sort σA, and t is of sort σT . Other logical connectives and the
existential quantifier are defined in the standard way.

Expressions of LS are interpreted over a branching tree structure. Each node in
the tree is referred to as a state, and every state has a unique past and several possible
futures [28]. A complete branch through the tree is a history, which is a bijection from a
linearly-ordered set of time points to the set of states. Thus, one can view a history-time
pair (h,τ) as a state. All expressions of the language are interpreted at such a pair (h,τ).
In particular, where V is a valuation of the terms and the atoms, H(φ , t) means that “φ
holds at t” and [[H(φ , t)]]Vh,τ is true if and only if [[φ ]]V

h,[[t]]Vh,τ
is true. The expression [[�φ ]]Vh,τ

is true if [[φ ]]Vh′,τ is true at all histories h′ that coincide with h up to τ .
Formulas of the form B(A,φ) and I(A,φ), respectively, mean that “agent A believes

φ” and “agent A intends φ”, and are interpreted in the standard way using accessibility
relations, one for each agent, on the set of history-time pairs (h,τ). A formula R(A,φ)
intuitively means that φ is revealed to A. Following [27], we interpret revelation formulas
using a function R which maps every agent and history-time pair (h,τ) to a family of sets
of history-time pairs (h,τ) (each set, intuitively, corresponding to a proposition which is
revealed to the agent in the history-time pair (h,τ)). Two important constraints on these
families is that none of them is empty (tautologies are all revealed) or contains the empty
set (contradictions are never revealed). Crucially, the families of sets are not closed under
intersection, allowing agents to have contradictory propositions revealed to them without
commitment to the revelation of falsehood.Thus, R is not a normal modal operator [29].
Hence, following [27], [[R(A,φ)]]Vh,τ is true if and only if there is some X ∈R([[A]]Vh,τ ,h,τ)
such that [[φ ]]Vh′,τ ′ is true for every (h′,τ ′) ∈ X .

Note that the notion of revelation proposed here is a passive one; our modal operator
R informally stands for what it means for a proposition to be revealed (in the sense of its
being exposed or not covered) to an agent. We are not accounting for acts of revelation.
As such, R is akin to B, and our account does not explain how revelation is caused just as
no common account of belief investigates events that result in belief.

An axiomatic system, referred to as Σ, that captures the basic intuitions we have about
the meaning of the various operators is displayed in Figure 1. (Variables are universally-
quantified with widest scope unless otherwise indicated.)6 Though not crucial for proving
our theorems, we include (in the right column) axioms for the VEL [28] fragment we
employ for completeness. As is common, B is a KD45 and I is a KD modal operator. IB1

and IB2 indicate that agents are never wrong about having or lacking intentions. IB3 is
motivated by [24]. It captures the intuition that intentions should be dropped once it is
realized that they are impossible to achieve.

R1 indicates that tautologies are revealed and contradictions are not, R2 requires
revelation to be closed under logical implication, and R3 states that a revelation of a
revelation amounts to a revelation. (Imagine someone telling A that B was told that
C’s credit card pin number is C’s birth date.) BR1 and BR2 demonstrate the intimate
relation between belief and revelation. BR1 is a weakened variant of a K axiom for R;
the requirement that ¬φ is not believed is necessary to avoid cases where φ → ψ is only

6Constraints on the semantic structure that ensure the validity of these axioms were identified but are not
discussed here for limitations of space. Most of these are standard, however, except possibly for those pertaining
to the revelation axioms.
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KD45 axioms for B.
KD axioms for I.

IB bridge axioms.

IB1. ¬I(x,φ)↔ B(x,¬I(x,φ))
IB2. I(x,φ)↔ B(x, I(x,φ))
IB3. I(x,φ)→¬B(x,¬φ)

R axioms.

R1. R(x,φ)∧¬R(x,¬φ), if � φ
R2. R(x,φ)→ R(x,ψ), if � φ → ψ
R3. R(x,R(y,φ))→ R(x,φ)

BR bridge axioms.

BR1. [B(x,φ → ψ)∧¬B(x,¬φ)]
→ [R(x,φ)→ R(x,ψ)]

BR2. R(x,φ)→ B(x,R(x,φ))

Group axioms.

G1. Mem(x, [y])↔ x = y
G2. Mem(x,G1�G2)

↔ Mem(x,G1)∨Mem(x,G2)
G3. Mem(x,G1�G2)

↔ Mem(x,G1)∧Mem(x,G2)]

VEL Axioms [28].

TP1. H(φ , t), if � φ
TP2. (t ≤ t ′ ∧ t ′ ≤ t ′′)→ t ≤ t ′
TP3. t ≤ t ′ ∨ t ′ ≤ t
TP4. (t ≤ t ′ ∧ t ′ ≤ t)↔ t = t ′
TP5. (H(φ , t)∧H(φ → ψ, t))→ H(ψ, t)
TP6. ¬H(φ ∧¬φ , t)
TP7. H(φ , t)∨H(¬φ , t)
TP8. H(φ , t)↔ H(H(φ , t), t ′)
TP9. t ≤ t ′ ↔ H(t ≤ t ′, t ′′)
TP10. ∀t[H(φ , t ′)]→ H(∀t[φ ], t ′)
TP11. AT (t)∧AT (t ′)→ t = t ′
TP12. H(AT (t), t)
TP13. φ →∃t[H(φ , t)]
BA1. �φ , if � φ
BA2. (�φ ∧�(φ → ψ))→ �ψ
BA3. �φ → φ
BA4. AT (t)→ �AT (t)
BA5. t ≤ t ′ → �(t ≤ t ′)
BA6. H(�φ , t)∧ t ≤ t ′ → H(�H(φ , t), t ′)

Figure 1. System Σ of LS axioms

• T1. R(x,φ ∧ψ)→ R(x,φ)∧R(x,ψ)

• T2. B(x,φ)→ R(x,φ)
• T3. R(x,φ)↔ R(x,R(x,φ))
• T4. B(x,φ)→ B(x,R(x,φ))
• T5. B(x,R(x,φ))→ R(x,φ)
• T6. B(x,¬R(x,φ))→¬R(x,φ)
• T7. R(x,B(x,φ))→ B(x,R(x,φ))

Figure 2. Some theorems of Σ

trivially believed. BR2 means that agents have complete beliefs about their revelations.
The revelation theorems in Figure 2 can be easily proved to follow from Σ.7

Henceforth, we make use of the following abbreviation: If O is B, I,R, or Mem; α
and β are terms of the appropriate sorts; and t is of sort σT then we write O(α,β , t) as a
shorthand for H(O(α,β ), t). The following definition is a precise characterization of the
simplest, bare-bones notion of secrecy based on the intuitions presented in Section 2:

Secret0(φ ,K,N,ψ, t) =def ¬NFE(K, t)∧
∀x[Mem(x,K, t)→ B(x,φ ∧ψ ∧¬NFE(N, t), t)∧¬B(φ ,x,N, t)∧I (φ ,x,N,ψ, t)]

where

NFE(G)=def �¬F(∃x[Mem(x,G)])
Fφ =def ∃t1, t2[AT (t1)∧ t1 ≤ t2∧H(φ , t2)]
B(φ ,α,N, t) =def B(α, ∃y[Mem(y,N, t)∧R(y,φ , t)], t)

7All proofs are available here.
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I (φ ,α,N,ψ, t) =def ∀y, t ′[I(α, t ≤ t ′ ∧ Mem(y,N, t ′) ∧∀t ′′[t < t ′′ ≤ t ′ → H(ψ, t ′′)]
→¬R(y,φ , t ′), t)]

Thus, at time t, group K keeps the secretum φ a secret from group N, under the condition
ψ if, at t, the group of secret keepers is not necessarily forever empty and each secret
keeper

1. believes φ , ψ and that the group of nescients is not necessarily forever empty (I5,
I8);

2. does not believe that there is a nescient to whom φ is revealed at t (I9); and
3. has the intention that at all future times t ′, such that ψ persists from t through t ′, φ

is not revealed to any nescient (I10).

5. Seven Theorems on Secrets

In this section, we prove some results about secrets. Some of these are quite intuitive;
others may seem counter-intuitive at first glance, but they are instructive in that they
sharpen our intuitions about secrets. Henceforth, we write S to refer to the statement
Secret0(φ ,K,N,ψ, t).

First, it should be uncontroversial that a revelation of the secrecy of φ is a revelation
of φ (at a time when there is at least one keeper). Consequently, a keeper does not believe
that there is a nescient to whom the secrecy of φ is revealed.

Theorem 1 The following statements follow from Σ.

1. R(x,S∧∃yMem(y,K, t), t)→ R(x,φ , t)
2. S∧Mem(x,K, t)→¬B(x,∃y[Mem(y,N, t)∧R(y,S∧∃zMem(z,K, t), t)], t)

Beliefs, intentions and revelations of a group g are inherited by every subgroup
thereof. Where g � g′ =def ∀t,x[Mem(x,g, t)→ Mem(x,g′, t)], the following follows.

Lemma 1 The following statements are entailed by Σ.

1. (∀x, t[Mem(x,g′, t)→ B(x,φ , t)]∧g � g′)→∀y, t[Mem(y,g, t)→ B(y,φ , t)]
2. (∀x, t[Mem(x,g′, t)→ I(x,φ , t)]∧g � g′)→∀y, t[Mem(y,g, t)→ I(y,φ , t)]
3. (∀x, t[Mem(x,g′, t)→ R(x,φ , t)]∧g � g′)→∀y, t[Mem(y,g, t)→ R(y,φ , t)]

Hence, secrets are also inherited by subgroups (assuming that the keepers’ sub-group
is not necessarily forever empty and every member of it believes that the nescients’ sub-
group is not necessarily forever empty). It follows that, given two secrets with the same
secretum and secrecy condition, the intersection of the keepers is keeping the secret from
the union of the nescients and the union of the keepers is keeping the secret from the
intersection of the nescients.

Theorem 2 The following are entailed by Σ.

1. S∧(K′ �K)∧(N′ �N)∧¬NFE(K′, t)∧∀x[Mem(x,K′, t)→B(x,¬NFE(N′, t), t)]
→ Secret0(φ ,K′,N′,ψ, t)
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2. Secret0(φ ,K1,N1,ψ, t)∧Secret0(φ ,K2,N2,ψ, t)→
[¬NFE(K1�K2, t)→ Secret0(φ ,K1�K2,N1�N2,ψ, t)]∧
[∀x[Mem(x,K1�K2, t)→ B(x,¬NFE(N1�N2, t), t)]
→ Secret0(φ ,K1�K2,N1�N2,ψ, t)]

Given that keepers are consistent believers, the secrecy condition ψ must, at any
time t, be consistent with each keeper’s beliefs and intentions, lest the group of keepers
happens to be empty at t. Given that keepers believe the secretum and certain properties
on the nescients and what is revealed to them the following theorem highlights some
particularly important aspects of this constraint on the secrecy condition.

Theorem 3 The following follows from Σ.
S→¬∃x[Mem(x,K, t)∧B(x,ψ → [¬φ ∨NFE(N, t)∨B(φ ,x,N, t)∨¬I (φ ,x,N,ψ, t)], t)]

The next theorem captures the intuition that secreta should not be bound to be revealed to
the nescients while the secrecy condition holds. (This includes the trivial case where the
secretum is a tautology.)

Theorem 4 The following follows from Σ.

S →¬∃x[Mem(x,K, t)∧B(x,∃y, t ′[t < t ′ ∧Mem(y,N, t ′)∧
∀t ′′[t < t ′′ ≤ t ′ → H(ψ, t ′′)]∧R(y,φ , t ′)], t)]

The clauses of the following theorem indicate that, given Secret0(φ ,K,N,ψ, t), under
certain conditions some propositions, other than φ , are also secreta or are believed to be
secreta by members of K.

Theorem 5 The following statements follow from Σ.

1. S∧Secret0(ξ ,K,N,ψ, t)→ Secret0(φ ∧ξ ,K,N,ψ, t)
2. S → Secret0(∃xR(x,φ , t),K,N,ψ, t)
3. B(x,S∧Mem(x,K, t), t)→ Secret0(φ , [x],N,ψ, t)
4. S∧Mem(x,K, t)→ B(x,Secret0(φ , [x],N,ψ, t), t)
5. S∧∀x[Mem(x,K, t)→ B(x,S∧∃y[Mem(y,K, t)], t)]→

Secret0(S∧∃y[Mem(y,K, t)],K,N,ψ, t)
6. S∧Mem(x,K, t)→ B(x,Secret0(Secret0(φ , [x],N,ψ, t), [x],N,ψ, t), t)

The first two clauses should be obvious enough: the conjunction of two secreta is
a secretum and so is the revelation of a secretum to some agent. According to the third
clause, an agent who believes that there is a secret of some group, and that they are a
member of that group, is actually holding the secret. This is so even though the agent
may be mistaken about the group’s holding the secret or about their membership in the
group. Clause 4 indicates that each secret keeper believes that the secret is kept by the
group to which only they belong. This is the closest we can get to an introspection result
for secrets; in particular, this keeper may be keeping the secret but is not aware of the
existence of the group or of its keeping the secret. However, as per the fifth clause, if every
secret keeper is aware of the existence of the group and of its keeping the secret, then the
secrecy of the secretum is itself a secretum of the same group of keepers from the same
group of nescients under the same secrecy condition. Nevertheless, by Clause 6, even in

H.O. Ismail and M. Shafie / A Commonsense Theory of Secrets86



this case where the keepers are aware of the group secret, they might still not believe in
the secrecy of the secret for the group, simply because they may fail to believe that other
keepers are aware of the secret. Hence, we can only prove a result akin to Clause 4.8

The following theorem presents separation results about K and N. First, no secret
keeper believes that they are a nescient (Clause 1). Hence, no keeper is a nescient if the
identity of nescients is known by each keeper (Clause 2). On the other hand, it may happen
that an agent A who was once a secret keeper becomes a nescient. (Imagine players of
team A keeping a secret from team B and at some later time an A player joins team B)
This, however, does not mean that the secret is no longer kept; there are at least three
reasons for this. First, the current secret keepers may not be aware of this conversion of
their old co-keeper; second, they may not be aware that A was a co-keeper; and, third,
it may be the case that the secretum, though once believed by A, is no longer revealed
to them. While this last possibility is indeed moot, we do not want to commit to the
permanence of revelation. However, assuming that a secret keeper is aware of the relevant
facts and believes in the persistence of revelation, a contradiction is inevitable (Clause 3,
where S′ is just like S with t replaced by t ′.)

Theorem 6 The following follow from Σ.

1. S∧Mem(x,K, t)→¬B(x,Mem(x,N, t), t)
2. S∧Mem(x,K, t)∧∀y[Mem(y,N, t)→ B(x,Mem(y,N, t), t)]→¬Mem(x,N, t)
3. [S∧Mem(x,K, t ′)∧B(x,t ≤ t ′ ∧ [R(C,φ , t)→ R(C,φ , t ′)]∧Mem(x,K, t ′)

∧S∧Mem(C,K, t)∧Mem(C,N, t ′), t ′)→ B(x,¬S′, t ′)]

Finally, if a secret keeper, A, believes that nescients believe that ξ implies the secretum
φ , then A does not believe that ξ is revealed to any nescient and they do not intend to
reveal it as long as the secrecy condition holds. Note, however, that ξ need not be a
secretum since it is possible that A does not believe it.

Theorem 7 The follows follows from Σ.
S∧Mem(x,K, t)∧B(x,∀y[Mem(y,N, t)→¬B(y,¬ξ , t)∧B(y,ξ → φ , t)], t)→

¬B(ξ ,x,N, t)∧
¬I (x,∀y, t ′[t ≤ t ′ ∧Mem(y,N, t ′)∧∀t ′′[t ≤ t ′′ ≤ t ′ → H(ψ, t ′′)]→ R(y,ξ , t ′)], t)

6. A Typology of secrets

Secret0 is only a bare-bones and, hence, weak notion of secrecy. We intuitively think
of most secrets as involving stronger conditions. Five such stronger notions of secrecy
are shown in Figure 3; all imply the bare-bones notion. Secret1 is a secret in which the
secretum is indeed not revealed to the nescients; Secret2 is a secret of which keepers
are aware; and Secret3 holds when the keepers believe that the secretum φ is indeed not
revealed to the nescients. In a Secret4 situation, keepers are aware of the identity of all
keepers, while, in a Secret5 situation, they are aware of their membership in the group
and believe that all keepers are aware of the secret.

8For most common cases of secrecy, stronger results can be proven since, in such cases, keepers are typically
aware of the existence of K and of their membership thereof. In particular, we can prove that if the condition of
membership in K is mere revelation of the secretum (which is typical of many secrets) each keeper believes that
they are a member of K: S∧Mem(x,K, t)∧B(x,∀y[Mem(y,K, t)↔ R(y,φ , t)], t)→ B(x,Mem(x,K, t), t).
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1. Secret1(φ ,K,N,ψ, t) =de f S∧∀y[Mem(y,N, t)→¬R(y,φ , t)]
2. Secret2(φ ,K,N,ψ, t) =de f S∧∀x[Mem(x,K, t)→ B(x,S, t)]
3. Secret3(φ ,K,N,ψ, t) =de f

S∧∀x[Mem(x,K, t)→ B(x,∀y[Mem(y,N, t)→¬R(y,φ , t)], t)]
4. Secret4(φ ,K,N,ψ, t) =de f

S∧∀x,y[Mem(x,K, t)→ [Mem(y,K, t)↔ B(x,Mem(y,K, t), t)]]
5. Secret5(φ ,K,N,ψ, t) =de f

S∧∀x[Mem(x,K, t)→ B(x,Mem(x,K, t)∧∀y[Mem(y,K, t)→ B(y,S, t)], t)]

Figure 3. Some common stronger notions of secrecy

Henceforth, we write Sn where is n is 1,2,3,4 or 5 referring to the corresponding
secret type. Perhaps most common secrets are instances of all five types, satisfying

∧5
i=1 Si.

These types are not totally independent though, as demonstrated by the following theorem.
The first clause states that S2 and S3 hold if and only if there is a secret and every secret
keeper believes the secret and that the secretum is not revealed to any nescient (S1). By
Clause 2, S2 follows immediately from S5. If all the keepers are unmistakably aware of
one another (S4) then S5 holds if and only if all keepers believe both the secret and that
all co-keepers believe the secret (S2). Of particular interest is the fourth clause which
indicates that S is equivalent to S3 in case the secrecy condition implies (or is) that the
secretum is not revealed to a nescient, which is a quite common condition of secrecy.

Theorem 8

1. Σ � S2 ∧S3 ↔ S∧∀x[Mem(x,K, t)→ B(x,S1, t)]
2. Σ � S5 → S2
3. Σ � S4 → [S5 ↔∀x[Mem(x,K, t)→ B(x,S2, t)]]
4. If ψ � ∀y[Mem(y,N, t)→¬R(y,φ , t)], then Σ � S → S3

The clauses of Theorem 9 state that, depending on the secret type, secret keepers
are bound to have certain properties (mostly beliefs). In an S1 situation, we get complete
separation of the groups of keepers and nescients (Clause 1); this separation is only a
belief of each keeper in an S2 situation (Clause 2). Similar results are indicated by Clauses
3 and 4 but with respect to the nescients’ not believing the secret. The fifth clause states
that, given S2, every keeper holds the de dicto belief that members of K are individually
keeping the secret. The sixth clause states that the same belief is held de re if both S2 and
S4 hold.

Theorem 9 The following follow from Σ.

1. S1 → [Mem(x,K, t)→ [¬Mem(x,N, t)]]

2. S2 → [Mem(x,K, t)→ B(x,¬∃y[Mem(y,K, t)∧Mem(y,N, t)], t)]

3. S1 → [∀y[Mem(y,N, t)→¬B(y,S0 ∧∃zMem(z,K, t), t)]]

4. S3 → [Mem(x,K, t)→ B(x,∀y[Mem(y,N, t)→¬B(y,S0 ∧∃z[Mem(z,K, t)], t)], t)]

5. S2 → [Mem(x,K, t)→ B(x, [Mem(y,K, t)→ Secret0(φ , [y],N,ψ, t)], t)]

6. S4 ∧S2 → [Mem(x,K, t)→ [Mem(y,K, t)→ B(x,Secret0(φ , [y],N,ψ, t), t)]]
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7. Related Work

Philosophical and psychological investigations of secrets are best represented by the work
of Bok in philosophy [1] and Kelly’s book [2] and the work of Slepian et al [3,22, for
example] in psychology. These authors share our intuition that secrecy is mostly about
the intention to conceal. Their interests in secrets are different from ours though; they are
primarily interested in ethical issues related to secrets [1] and in the motivations for and
the psychological effects of keeping secrets [2,3,22]

Logical accounts of secrecy abound in the literature on system security [5,6,7,8,9,
10,11,12,13,14, for instance]. Much of this literature is rooted in, or best represented by,
the work of Halpern and O’Neill [9]. The authors consider multi-agent systems with a
branching time structure where, at any time, each agent is in some local state comprising
all the information accessible to the them. Agents are never mistaken about their local
states; they never hold false beliefs. Using this machinery, Halpern and O’Neill define
several notions of secrecy. The most fundamental of these, total secrecy, is defined as
follows. The actual local state of agent j is totally secret from agent i if i cannot “rule out”
any possible local state of j.

The usefulness of this account, and of most other accounts in the literature [11,13,
for example], is based on a couple of assumptions:

1. Local states are typically a collection of assignments of values to variables. If
said variables correspond to propositions, then, assuming a classical bivalent logic,
there can only be two values: true and false. Hence, not being able to rule out a
local state amounts to not being able to decide whether a proposition is true or false.

2. Agents cannot hold false beliefs. As pointed out above, this is built into the theory.
Hence, given the first point, if we think of secrets as propositions, a proposition can
only be a secret from agent i if i is in suspense about the proposition.

3. Systems can be constructed. The assumption here is that it is always possible to
fully characterize the system as a branching tree of states. This is probably always
possible if systems are programs or simple database transactions [11, for example].

Given our objective to characterize secrecy in an unconstrained, commonsense setting,
we cannot uphold any of the above assumptions. First, since we consider objects of
secrecy to be only propositions, assumption 1 reduces to the case of variables with binary
domains. Second, we cannot in general make the unrealistic assumption that agents have
no false beliefs; assumption 2 does not allow us to account for situations where j keeps P
a secret from i who believes ¬P. Third, in a general theory of secrets allowing all forms
of complex social interactions, the assumption of a system which is constructible as a
branching tree of states is at least questionable.

The revelation modality we introduced does not seem to have a thoroughly investi-
gated precedent. It is perhaps possible to use a variant of the notion of announcement from
dynamic epistemic logic [30,31] to model acts of revealing. This would, however, require,
possibly extensive, revision of the principles underlying the logic of announcement. In
particular, a truthful announcement of P results in the addressee’s believing P (at least if
P is atomic) and a possibly lying announcement thereof causes the addressee to believe
that the announcer believes P [30,31]. Even if we adopt the latter, more cautious attitude
towards announcement as a model of revelation, we are restricted to revelations made only
by cognitive agents which may have beliefs. Our passive notion of revelation does not
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require this and is consistent with a revelation resulting from a simple act of perception
not involving an announcing agent.

8. Conclusion

We presented foundations for a logical, commonsense theory of secrets. A secret is
construed as a situation in which a group of secret keepers believe a proposition, which
they do not believe to have been revealed to members of another group of nescients.
Crucially, the keepers intend that this concealment from the nesciencts persists so long as
some condition of secrecy holds. To that end, a non-normal modal operator for revelation
was identified together with axioms relating it to belief. Further, towards an ontology of
secrets, various types of secrets were identified, all of which including the bare-bones
definition in addition to some extra common conditions. Several properties which sharpen
our intuitions about secrets were proven and more are to be investigated in future work.
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