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Abstract. The manufacturing industry is facing multi-dimensional, ever-growing 
challenges ranging from the lack of real-time manufacturing resource data, the 
inability of catching production exceptions, to the occurrence of cascading failures. 
This paper proposes a network-based cyber-physical production system to model, 
diagnose and control complex production systems subject to cascading failures. The 
goal is to study and characterise the evolution of cascading failure mechanisms and 
further mitigate the vulnerability of the manufacturing system. This is achieved 
through the deployment and synergistic integration of the Internet of technology 
with the reliability importance theory. The paper contributes to the network 
reliability theory and applications by proposing new importance measures and 
strategies to support the operation of cyber-physical production systems. 

Keywords. Cyber-physical production systems, complex network, cascading 
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Introduction 

Current manufacturing systems are required to establish flexible, adaptive, and reliable 

manufacturing operations locally and globally by using integrated information 

communication technology (ICT) and smart algorithms [1]. Manufacturing systems 

depends on the timely acquisition, distribution, and utilisation of real-time data from both 

machines and processes on manufacturing shop floors. Dynamic data flow and 

integration of the computational entity of the manufacturing systems and the physical 

world plays an important role in guaranteeing good performance [2]. Cyber-physical 

systems (CPSs) show a promising potential working as the solution to the needs of the 

current manufacturing systems [3], which is an essential concept among smart 

manufacturing technologies. The term of CPS was initialised in the US in 2006 [4] and 

is composed of collaborating computational entities that connect the cyber world with 

the surrounding physical environments or processes through data access in an Internet 

environment, i.e. physical processes are monitored and controlled by the embedded 

computers and feedbacks loops are designed to allow both sides to affect each other. CPS 

also positively affected manufacturing and production by introducing cyber-physical 

production systems (CPPS) in process automation and control [5]. CPPS is a 
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manufacturing-centred concept from CPS that fuses computer science, information and 

communication technology, and manufacturing engineering. The introduction of a CPPS 

allows smart manufacturing that aids in various decision-making processes by predicting 

the future based on past and present situations [6]. One industrial application of CPPS in 

the production engineering is a holonic cyber-physical production system used for the 

remote monitoring and control of machine tool, which uses the combined strength of 

holons, agents and function blocks [7].  

However, current manufacturing systems are characterised by complex product 

structures, huge multi-source heterogeneous manufacturing resources, and random 

uncertainty factors of production and these typical characteristics of the manufacturing 

systems result in the lack of real-time information of manufacturing resources, 

production exception, and cascading failures [8]. Complex relations between production 

units in the manufacturing system and the topological structure make it difficult to build 

a cyber-physical-enabled network structure. The propagation and diffusion of failures 

lead to the malfunction of other units and the entire manufacturing network is broken 

down.  

New paradigms and technologies such as the Internet of Things (IoT), complex 

network theory, and reliability importance, have recently gained a lot of attention in the 

manufacturing fields because of these challenges. They can be applied as a solution to 

model complex-network-based CPPS. Therefore, the research questions arising from the 

design of complex-network-based CPPS are summarised as:  

 

1. How to sense and capture real-time information of manufacturing resources, 

catch production exceptions, and monitor cyber-physical production systems?  

2. How to build a network-based cyber-physical production system model, and 

identify the cascading failures based on local load preferential redistribution 

rules? 

3. How to monitor and derive the evolutionary mechanism of the importance of 

nodes within a cascading failure?  

 

Real-time data acquisition for manufacturing systems is a prerequisite of carrying 

on the smart decision-making on the manufacturing operation. IoT, as a core technology 

in CPPS, refers as a wireless communication capability integrated with sensors and 

computing that allows the collection of data related to uniquely identifiable objects 

through the internet [9][10]. A typical architecture of IoT is composed of four layers: 

sensing layer, networking layer, middleware layer, and application layer. The sensing 

layer is responsible for sensing and capturing the real-time information of resources, 

devices, and further sharing among the identified units through a constructed wireless 

network with tags and sensors [11]. RFID (radio frequency identification), as a key 

enabling technology of IoT, allows microchips to transmit the identification information 

to a reader through wireless communication [12], and the main function of an application 

layer is to integrate the methodologies and functions of the system to achieve IoT-

enabled industrial applications. For example, an IoT-enabled real-time data collection 

framework was developed for shop-floor production performance analysis for the 

manufacturing systems [13]. An IoT-enabled manufacturing system, which is a 

multisource real-time data-driven manufacturing system, is developed for monitoring, 

decision making and management from the production orders assigned to the required 

work-in-progress or finished products [14]. 
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The manufacturing system can be defined as a manufacturing network from a 

perspective of graph theory [15]. A complex manufacturing system consists of a great 

number of manufacturing elements, workstations, machines, buffers, transportation 

devices [16], while these physical objects and cyber entities within the manufacturing 

system can be considered as the nodes of the network, and the relation between them can 

be defined as edges. In addition, the degree of a node is the number of edges that are 

incident to the node. Due to the high complexity of the internal elements within the 

network, local tiny disturbance in the network such as exceptions and failures can induce 

internal cascading failure. The spread of the failures in the network can also lead to 

serious consequences and largely affect the performance of the manufacturing systems 

[17]. The load-capacity model in the cascading failure model has gained a lot of attention 

because of the flow transmission within all the physical or cyber networks. The network 

is also proven with overload issues. The Motter-Lai (ML) capacity model studied the 

overload-based cascading failure in the network and assumed that the original load of a 

node is proportional to the capacity of the node. Then, the improved model was 

developed and concluded that the node with a high original load can burden more load 

when happening overload issues [18]. The model proposed in [19] also shown that the 

capacity of the node is related to the original load and degree of the node. For these 

proposed models, the load of the network was instantaneously adjusted and adapted into 

the new status of the network after the node failure. This requires all the nodes in the 

network have the global information of the network.  

The rest of the paper is organised as follows. Section 1 describes the framework of 

complex-network-enabled cyber-physical production systems. Section 2 presents the 

complex network modelling of the cyber-physical production system. Section 3 explains 

the evolutionary mechanism of the cyber-physical-based complex network within the 

cascading failure. Finally, Section 4 draws conclusions and highlights future work.  

1. A complex-network-enabled cyber-physical production system 

In this section, the architecture of the complex-network-enabled CPPS is shown as 

Figure. 1. It consists of a “cyber” part and a “physical” part and four modules, namely 

execution part (physical devices) module, event-driven data sensing/processing module, 

complex-network-based CPPS module, and human user module. Under this architecture, 

real-time data of devices in the physical shop floor with an embedded sensor network is 

sensed and collected. The data is transmitted and shared with the computational entity of 

the system via a network. The computational entity is responsible for data processing, 

monitoring and controlling the action of the physical entities. In a cyber part, the complex 

network of CPPS is developed. Humans as the third part of the system can then interact 

with the system when necessary/desired through embedded interfaces. 

In the context of CPPS, the physical part presents the actual physical equipment on 

the shop floor and the sensed data collected by the embedded sensor network are 

processed and defined as basic, complex, and key events. The definitions of the basic, 

complex, and key events are given in [20]. The event-driven information collection 

system consists of physical sensing, data transmission, information processing, and data 

storage from the bottom to the top. The physical sensing module is used to sense and 

transmit the information of the production tasks and monitor the production status of the 

devices through the embedded sensors and RFID devices. Under the built-in wireless 

network and embedded transmission devices, a data transmission module is used to 
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transmit data to the information processing module, which can identify the production 

exception, and achieve the added value of the information through data filtering and 

definition. According to the definition of the events collected from the physical shop 

floor, these event-based data are defined and classified. They are machine key data, 

product key data, system exception, and network node failures. The system exception 

includes the exceptions from the product network and machine network.  

2. Complex network modelling of CPPS  

Based on real-time data of the manufacturing resources, two local network models of 

CPPS are developed, namely a machine network model and a product network model. 

The correlation of the required machining process of products and the machining 

capacity of machines establishes a complex internal connection of the local networks.  

2.1 Machine network model 

The basic event in the machine network can be considered as a basic unit that represents 

the physical properties of the nodes of the machine network. A key event represents the 

change of the whole performance of the machine network and the change derives from 

the change of the node’s status of the machine network. Meanwhile, this also leads to the 

change of the node’s topology. The physical properties and topology of the nodes of the 

machine network keep stable in a steady stage, and the structure of the network also does 

 

Figure 1. A complex-network-based cyber-physical production system 
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not change. The degree of the node in the machine network is defined as the importance 

of the nodes and is determined by the connection relation of the node and its attributes. 

The topology of the network changes with the status of the nodes. Therefore, the 

evolutionary mechanism of the network plays an important role in the change of network. 

The two load adjustment of the network nodes namely cut edge and reconnection, is the 

key of the evolutionary mechanism of the machine network.  

Figure 2(a) shows the relation of the machines used for machining a part and the 

corresponding machine network model. In a certain time interval, the topology and 

node’s status of the network keep stable. When the system enters into a new time interval 

and production tasks on the production devices change, then the topology of the network 

and the status of machines change accordingly. Once the current machine does not have 

the ability of handling new tasks, a new node with the capability of producing new tasks 

joins the machine network. Meanwhile, the new node builds a connection with other 

nodes. Therefore, the number of the nodes and the edges of the network increase. In the 

context of network evolution, the exceptions such as overload, failure, machining 

breakdown, and part damage, lead to disconnection and reconnection of the nodes in the 

machine network. When reconnecting with other nodes, the desired high robustness of 

the network makes the node connect with nodes with large degrees. The nodes with large 

degrees have a stronger ability of handling exceptions. This behaviour is defined as the 

preferential attachment. 

2.2 Product network model 

From the above discussion, it is concluded that the production of complex products has 

an obvious hierarchical relation. It is because a complex product is composed of various 

components which are assembled by several parts, while the parts are completed by 

different machining processes. Therefore, a hierarchical product network is developed in 

Figure 2(b) which consists of the process-level (first-order) network, the part-level 

(second-order) network, the component-level (third-order) network, and product-level 

(fourth-order) network. The production process is considered as a basic unit in the 

context of the complex product production, and the relation between various production 

process is highly complex. According to the hierarchical structure of the product network, 

a part in the first-order network is finished by several production processes. This 

machining process is formed by the serial production relation. The second-order network 

is composed of the part-level tasks and the fourth-order network is the product-level tasks, 

which is composed of the component-level tasks (the third-order network).  

 
Figure 2. (a) Relation of the machines used for machining a part; (b) A hierarchical product network 
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2.3 A complex network model of CPPS 

Considering the shop floors in advanced manufacturing companies, they are 

characterised by intelligence, adaptive decision-making, and flexibility. To have an 

insight of the process of modelling the complex network within the context of CPPS, a 

complex network of the CPPS used for producing a product is shown in Figure 3, which 

reflects the layout of the shop floor and the machining process of the product.  

The built-in sensing devices in this cyber-physical-enabled shop floor can sense and 

collect the real-time data of the manufacturing resources when they enter into the shop 

floor. Under this sensing framework, the RFID readers can sense and record RFID tags 

attached on the manufacturing resources, and then information of the manufacturing 

resources can be collected such as location, current status, and current machining process. 

Meanwhile, the production exceptions and machine failures can also be sensed which 

can be defined as RFID events. The workflow of collecting RFID events in the whole 

shop floor is shown in ‘RFID events’ in Figure 3. In the production & assembly, the 

status of operators, materials, machines is recorded and checked. The machining 

execution of the production and assembly is then finished and the WIP (work in process) 

is sent to the buffer. The product raw material module is responsible for tracking and 

monitoring the status of the raw materials and the related manufacturing resources such 

as the pallet. Then, the complex network of the cyber-physical-enabled shop floor is 

presented and this network consists of 9 machining processes and assembly processes. 

Machining processes are P���, P���, P���, P���, P���, P���, and assembly processes are 

{P���, P���} → P�� ,  {P���} → P�� , {F��, F��} → F� . According to the machining 

processes from the raw material area to final product area, it is obvious that the topology 

of the network can be highly complex. The flow of the machining process is 

P��� → P��� ,P��� → P��� , P��� → P��� , {P���, P���} → P�� ,  {P���} → P�� , {F��, F��} →

F�. When the exceptions or failures (overload) happen, the products and machines on 

three production lines perform the load reallocation. Failure nodes reallocate the load 

based on the proposed load allocation rules, which will be introduced in the following 

sections. From Figure 3, P��� ↔ P��� , P��� → P��� , P��� ↔ P��� , P��� ↔ P��� , P��� ↔

P��� can perform the load reallocation in case of node failure. If the load of a node that 

accepts extra load does not exceed its load capacity under the load reallocation rules, and 

the growth and reconnection of the nodes and edges are performed, the load reallocation 

is then completed. Otherwise, the load reallocation of the failure nodes starts a new 

optimisation cycle until finished. This procedure of the load allocation is defined in the 

cascading failures/exceptions module. However, this process can lead to the cascading 

failure of the network nodes and even result in the breakdown the part of or the whole 

network. The load allocation rules and the evolution mechanism of the cascading failure 

are of great importance to explore the evolution of the cyber-physical-based complex 

network. 
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3. Evolutionary mechanism of the cyber-physical-based complex network within 

the cascading failure 

The mechanism of the cascading failure of the complex network has recently gained a 

lot of attention in the field of manufacturing and is focused on the common-cause failure, 

load failure, and dependence failure. According to the definition of the cascading failure 

[21], the focus of work is given to an overload failure mechanism. The network in the 

real world has a certain form of ‘flow’ which produces the load. The load of the network 

can be reflected as two aspects: (1) node’s load, the load capacity of the network node; 

(2) edge’s load, the load capacity of the network edge. 

The nodes in the machine and product networks are characterised by the 

transmission and distribution of the load. Each node or edge in the network has a certain 

load and capacity in which the capacity is the maximal load of the node or edge can 

handle. The nodes in the machine network have the machining load and capacity and can 

be in failure due to the exceptions such as machine breakdown, program errors, and 

machining errors. In the load distribution of the node, the load accepted by other nodes 

exceeding it capacity may happen, and this will lead to new load distribution of nodes 

and spread in the whole network, and finally result in the cascading failure of the nodes. 

Here, the complex network model within cascading failures under the neighbour 

preferential allocation rules is developed.  

 

 

Figure 3. A network-based cyber-physical production system model 
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3.1 Cascading failure within the neighbour preferential allocation rules 

The load of the nodes for which the node failure happens is allocated to the part or all of 

the nodes in the network, and these key events induce the updating load of the nodes to 

accept the load of failure nodes. The exceeding load capacity of the node due to accepting 

a new load of the failure nodes triggers the new load allocation. Otherwise, the node 

works in the time step. The cascading failure of the network are addressed until the load 

of all the nodes of the network does not exceed their capacity. 

The original load �� of node � is defined by a function of the degree of the node �� 
and adjustable parameters of the load (�,�) . Then, the capacity of node �  (�� ) is 

proportional with its original load �� , and it is formulated as a function of ��  and a 

capacity coefficient � which represents the ability of handling the extra load. When � ≫

0, any of nodes does not trigger the cascading failure. It has a finite value. The analysis 

of the network topology and evolution show that the machine and product networks are 

characterised by Barabási–Albert (BA) scale-free network [22]: preferential attachment 

and growth. Therefore, the scale-free network model is adopted in this paper.  

To clarify the function of the intensity parameter of the original load (�), the 

uniformity of the load distribution (	), and the threshold of the capacity efficiency (��), 
three cases of � are discussed, namely � > 1, � < 1, and � = 1. Then, it is concluded 

that when �  is constant, 	 = ��  enables the complex network to have the strongest 

ability to resist cascading failures. The larger the average degree of the BA scale-free 

network < � > is, the larger the scale of the network is, and also the higher the ability to 

resist the cascading failure is. The analytical results of �� for the BA scale-free network 

are shown in Figure 4.  

The complex network of CPPS has the typical characteristics of BA scale-free 

network which are preferential attachment and growth, and the degree distribution yields 

an approximately power-law distribution. Therefore, it can be described by the cascading 

failure model and the BA scale-free network. For the complex-network-enabled CPPS, 

the results show that the connection density of the network and the scale of the network 

contribute to resisting the cascading failure of the network. The increase in the capacity 

of the network can also improve the ability of resisting the cascading failure. However, 

these strategies are limited by cost and technical issues. The capacity of the network is 

finite. The original load of the node in the network and the allocation strategy of the 

nodes with the failure can affect the cascading failure of the network. When both � and 

	 are near one, the possibility of inducing the cascading failure in the network is the 

lowest. When the complex network is in stable status, � and 	 tend to be the same, the 

possibility of causing the cascading failure is minimal. These analytic results contribute 

to modelling a robust complex network of CPPS. 

  (a)                                                        (b)                                                        (c) 
Figure 4. Analytical results for the BA scale-free network (a) � = 0.8; (b) � = 1.0; (c) � = 1.3 
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3.2 Evolutionary mechanism of the importance of nodes within a cascading failure  

The study on the node importance of the network makes it possible to identify key nodes 

and edges which is of importance to improve the ability of resisting the cascading failure. 

Then, the cascading failure or the failure of the whole network induced by the breakdown 

on the key nodes and edges can be avoided. The BA scale-free network proposed in the 

above section has a better fault-tolerant ability to the random attack compared with the 

random network, while it shows the vulnerability of the network resisting the cascading 

failure.  

In this section, the generation function-based identification scheme of the node 

importance is proposed. Then the importance of the node with the cascading failure can 

be determined and the key nodes in the network can be identified. Change from the key 

nodes to non-key nodes indicates the change in the ontology and initial status of the 

network and it also indicates the change from the steady status to the non-steady status 

of the network. Therefore, the procedure of identifying the node importance are 

introduced as follows:  

 

1. Define the largest cluster. It is assumed that the network 
� is composed of �� 

nodes and then 
� has �� cluster ��(� = ��), the largest cluster is the cluster with 

the largest number of nodes.  

2. Define the possibility coefficient of the cluster in the network. The possibility 

coefficient (��)  is the ratio of the number of the nodes within the cluster 

�� (�(��)) to that of the nodes in this network (��).  

3. Define the node importance. It is defined as the effect of deleting this node on 

the network such as the level of the damage.  

4. Measure the importance of the node. Network 
�  is divided into multiple 

clusters �	(� ≥ 1)  after deleting node � . The possibility coefficient of the 

clusters is calculated and the node importance is formulated as �� =

���	���	��, �	 ⊂ 
� .  
5. Identify the key nodes or key node sets. The importance of all the nodes in the 

network is calculated and ranked in an ascending order. The node with the 

possibility coefficient of the cluster lower or equal to the value of the key node 

is defined as a key node, namely �	
� = �(��). If they are multiple nodes, they 

are defined as a key node set {�	
�} = �	
�(�� < ��).   

 

The proposed identification method of the key nodes can avoid the drawbacks 

induced by: 1) the importance is equal to the damage of deleting the node on the network, 

and 2) the importance is equal to the significance. The proposed method also considers 

the structure of the network, the spreadability and mechanism of the network behaviour, 

and the properties of the node.  

Then, the importance of node � (�(�)) is defined as the average fluctuation degree 

of all the nodes in the range of the parameter of the load allocation and is formulated as 

(1). Details of the derivation procedure are omitted here due to space constraints. 

 �(�) = � ���
��������

�∈��

/[�(��)�� ���
�����∈��

]  (1) 

where �(��) is the number of the nodes in ��. If �(�) ≥ 1, the failure of node � must 

induce the cascading failure by the overload of the node. If �(�) < 1/�(��), the failure 
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of node � does not trigger the cascading failure. If 1/�(��) ≤ �(�) < 1, the failure of 

node � has the uncertainty on the induction of the cascading failure. � ∈ [0, ∞] and 	 ∈

[0, ∞], � → 0 indicates the global preferential allocation rules, and � → ∞ indicates the 

neighbour preferential allocation rule. Here, due to the characteristics of the complex 

network of CPPS: preferential attachment and growth, the effort is given to the case of 

� → ∞ . Then, the analytical function of the node importance of the BA scale-free 

network with the neighbour preferential allocation rule is formulated as follows: 

 �(�)�� = [����(	 − � + 2)2�(�[�����]/[��] − 1)]/[�(	 − � − � + 2) <

� >� (�[����]/[��] − 1)]  (2) 

It can be derived from (2) that the safety and risk thresholds are 1/�(��) and 1. 

�(�) < 1/�(��), the failure of node � does not induce the cascading failure; �(�) ≥ 1, 

the failure of node � leads to the overload-induced cascading failure. Therefore, when the 

importance of all the nodes in the network is lower than the safety threshold, then the 

network can handle the failure of all the nodes without inducing the cascading failure. 

When the importance of the key node is larger than the risk threshold, the failure of the 

node induces the overload of other nodes; The importance of the node with the least 

importance is larger than the risk threshold, the failure of any node must induce the 

breakdown of the whole network. The lower bound of the capacity coefficient of these 

three cases are defined as ��, ��, and ��. Figure 5 shows the lower bound of the capacity 

coefficient of these three kinds of the networks.  

From Figure 5, the area of resisting the cascading failure of the network is located 

in the area with a larger value of �� and the importance of all the nodes is lower than 

1/�(��). The area with the value smaller than �� is the total cascading failure area and 

the failure of any node in the network can induce the breakdown of the network. The 

area with the value between �� and �� is the random failure area and the importance of 

all the nodes is in the range of 1/�(��) and 1. The area with the value between �� and 

�� is the failure of some nodes can induce cascading failure and the importance of some 

nodes is larger than 1.  

Then, the effect of �, �, and 	 on the importance of the node in the BA scale-free 

network is studied. � =1000, � =3, �� =2, < � > =6, and the importance of each node 

is assumed to be the average of the importance of the same nodes. Figure 6 shows the 

relation of the node importance (��) and the parameters for BA scale-free network within 

the neighbour preferential allocation rule: a) with the capacity coefficient (�); b) with the 

 

Figure 5. Lower bound of the capacity coefficient of the network
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intensity parameters of the original load (�); c) with the uniformity of the load allocation 

(	). 

Figure 6(a) shows the capacity coefficient large enough to enable any node in the 

network not induce the cascading failure within the neighbour preferential allocation rule. 

Meanwhile, the importance of the node only reflects the structure importance of the node 

and the distribution of the importance of the node is an approximately exponential 

function with the importance degree. From Figure 6(b), the power exponent of the 

distribution of the node importance is related to the intensity parameter of the original 

load. Under the neighbour preferential allocation rule, (1) � > 1 and � > 0 indicates 

that the degree of the node is proportional with the importance of the node; (2) � < 1 

and � < 0 indicates the node with a low degree is a potential key node. From Figure 6(c), 

	 is inversely proportional to the possibility of inducing the cascading failure. The node 

with the uneven load distribution has a low possibility of happening the cascading failure. 

The non-uniformity is reflected on the node with large degrees having a large load. 

Therefore, by analysing the problem of the effect of the non-key nodes on the cascading 

failure, it can be concluded that the intensity parameter of the original load and the 

uniformity parameter of the load distribution are two key factors influencing the 

importance evolution of the nodes for BA scale-free network.  

4. Conclusions  

This paper studies the cascading failure of a complex network-based cyber-physical 

production system. Through the use of IoT, the evaluation of the reliability importance 

of individual nodes is monitored to address the operating challenges arising in complex 

manufacturing systems. The contributions of the study are summarised as follows. First, 

our method is based on real-time, event-driven information sensing and capturing 

method. The proposed CPPS is capable of sensing real-time manufacturing states and 

catching production exception processes via the embedded sensor network. Second, local 

load preferential allocation rule is employed to build the cascading failure model. It 

allows for exploring the self-organisation evolvement of CPPS, and further deriving the 

propagation path of cascading failure. Third, the evolution of nodes’ reliability 

importance enables us to track how a non-key node evolves into a key node over the time 

under the overload mechanism. Our future work will focus on advanced algorithm 

development for real-world complex industrial practices.  

     (a)                                                          (b)                                                     (c) 
Figure 6. Relation of �� and: a) �; b) �; c) � within the neighbour preferential allocation rules 
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