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Abstract. To increase efficiency and decrease energy in fierce competition, higher 
standard of transportation scheduling mode for shipbuilding is necessary and urgent. 
By analyzing the “one-vehicle and one-cargo” transportation scheduling problem in 
shipbuilding, this paper proposes a bi-objective mathematical model and design a 
Multi-Objective Tabu Search algorithm(MOTS) to minimize total carbon emission 
and transportation time cost. Further, to improve the computation performance of 
the solution method, we combined NSGA-Ⅱ and MOTS to design a hybrid heuristic 
algorithm. Computational experiments compare three optimizing approaches and 
reveal that MOTS and NSGAⅡ-MOTS have certain advantages in terms of solution 
effect and convergence speed in large-scale instances. The case shows the proposed 
optimization approach can reduce carbon emissions by 61.22% for daily 
transportation. 
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Introduction 

Shipbuilding adopts a typical pulling production method. “Segments” are basic 
operating units for ship construction process, which need to pre-process, assemble, outfit 
in different yards before general assembly and loading. Due to the heavy load, segment 
logistics is important for organizing the ship construction process flows. The 
transportation of ship blocks mainly depends on heavy flatcars, which are scarce 
resources in shipyards. The daily fuel consumption and carbon emission of flatcars are 
high. A large-scale shipyard in Shanghai produces 36 ships per year, with an average of 
200 segments per ship, the basic operation of the flatcar is 160 times per day. Based on 
the average workload of 2km per time, about 2172kg CO2 emission per day will be 
generated by flatcar transportation. 

The value proposition of this paper in transdisciplinary systems engineering is 
embodied in energy, logistic, and computer science domains to achieve successful 
diffusion(10) . In particular, it is demonstrated in terms of time for traditional metrics 
and quantifying transport energy consumption, and a bi-objective mathematical model is 
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proposed to further explore a high efficiency and low energy consumption transportation 
scheduling mode. 

 
Figure 1. Transport ship block by a flatcar. 

1. Previous studies and techniques 

Flatcar transportation scheduling problem in shipyards is different from traditional 
VRP. Nowadays, the research on the ship block transportation scheduling is 
systematizing at home and abroad. Meanwhile, the optimization algorithm are becoming 
mature, such as GA(10), greedy algorithm(10), meta-heuristic algorithm(10), ACO(10), 
etc.  

Transportation is one of the main sources of greenhouse gas emissions, and green 
vehicle transportation problem has become a research hotspot. Table 1 summarizes and 
compares GVRP-related research in terms of types and solution methods. With the 
intensification of environmental pollution and scarcity of resources, green transportation 
has become an inevitable development trend of ship block transportation scheduling. 
Flatcars generate a large amount of carbon emissions. However, there are few researches 
on the green flatcar transportation scheduling in shipyards at home and abroad, and only 
a few scholars in China have studied green scheduling problem in container terminals. 

Table 1. The comparison of GVRP-related research literature. 

Autor Problem types Vehicle speed Solution method 
Scheduling Route Planning Yes No  

Li et al. [7] (2013) √   √ 
Fuzzy multi-objective 

optimization 
algorithm 

Guo Zhaoxia et al.[8] 
(2016) 

√   √ 
Novel memetic 

algorithm 

Salehi et al.[9](2017) √  √  
Novel constructive 

heuristic 
Zhang et al. [10](2018) √ √  √ ACO 

Wang Yong et al. [11] 
(2019) 

√ √ √  
Multi-objective 
particle swarm 
optimization 

2. Problem statement 

2.1. Problem description 

The problem of flatcars scheduling in shipyard based on OVOC mode can be 
described as follows: there are n transportation tasks and m flatcars. Each transportation 
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task includes: task number, segment number, segment weight, start location, destination, 
and time window (when the task can be started). Each heavy flatcar includes: flatcar 
number, flatcar ID, load-bearing capacity. Each transport task must be performed within 
a time window by a heavy flatcar that meets its segmented weight requirements. The 
following Figure 2 is the distribution map of road junctions, the location of the yards, 
and parking location of a shipyard in Shanghai, China.  

 
Figure 2. Distribution map of intersections and yards. 

The basic assumptions of the problem are as follows: 
1. All segments in the task table meet the load-bearing requirements of flatcars, and 

the order of tasks can be changed. 
2. The flatcar can't be interrupted during the mission. 
3. A single flatcar cannot transport multiple segments at the same time. 
4. Without considering the road factors, such as the interference. 
5. Set the loading and unloading time of the flatcar to a fixed value and add it to the 

task execution time. 
6. The target yard must be able to accommodate the transported mission segments. 
Based on the above assumptions, the problems to be solved are as follows: 
1. Transport task sequence on each flatcar. 
2. The optimal route for each flatcar. 
3. The actual start time of each task. 

2.2. Mathematical model 

The factors that evaluate the quality of the flatcar driving route are: 1) the length of 
the route; 2) the number of turns during load driving. We use the depth-first search 
algorithm([6]) to traverse all feasible paths and consider the factors of turning.The 
definitions of model-related parameters and decision variables are shown in Table 2. 

Table 2. The indices, parameters and decision variables. 

Notation Meaning 
 Abscissa of intersection  
 Ordinate of intersection  

1 3

2 4

5

6

7

11

12

10

9

8

16

15

14

13

Parking

Distribution 
Yard

Processing 
Yard

Sub-
assembly

Workshop

Curved 
Block

Workshop

Comprehensive 
Yard Platform 

11

Panel 
Block

Workshop
Panel 

Platform

Platform 
10

Painting
Workshop

Painting
Platform

Yard

Platform 9

Platform 8

Platform 9B

Platform 
5

Platform 
6

Platfor
m 
7

Final 
Assembly 
Platform

Platform 
7

Road  Junctions

Yards or Workshop
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 Number of turns when task  is performed 

 Task number set T= , where  

 Flatcar number set F=  

 Flatcar speed set L= , the unit is m/s 

  represents load speed;  represents no-load speed of the flatcars 
 Execution time of the task  

 No-load driving time to the starting point of task  after performing task ; where 
 or  represents that the flatcar departs from or returns to the parking lot 

 Infinite positive number 
[  The time window of task ;  is the time starting point at which the task can start 

executing;  is the time ending point at which the task must start 
[  Time window of the opening and closing of the parking lot 

 Segment weight of task   
 Load-bearing capacity of flatcar  

 The weight of no-load travel time for all tasks performed by the flatcar 
 The weight of waiting time for the flatcar 
 Transport efficiency of flatcar, set  

 Specific constants of flatcar, set  
 Specific constant of road ( ), set  
 The fuel emissions for diesel fuel, set  

 Conversion factor for fuel consumption per Joule energy ( ) 

 Distance between start and end of task  
 Distance from the end of task  to the start of task  

 The time flatcar takes to make a turn, the unit is min / time 
Decision Variables 

 0-1 decision variable for flatcar  to perform its first task  
 0-1 decision variable for task  execution order on flatcar  
 0-1 decision variable for flatcar  to perform its final task  
 0-1 decision variable for whether platform performs task  
 Actual start time of task  

The mathematical model to minimize total non-value-added transportation time and 
total carbon emission of the flatcars is presented as follows: 

                                 (2.1) 
                                              (2.2) 

                             (2.3) 
                   (2.4) 
                   (2.5) 

           (2.6) 

            (2.7) 

                                                                  (2.8) 
                                                                                            (2.9)           

  (2.10) 
                                                                      (2.11)

                                                             (2.12)
                                                                (2.13) 

                                                     (2.14)
                                                  (2.15) 

                                                  (2.16)
                                                    (2.17) 
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 (2.18)                        
Objective functions are presented in (2-1) and (2-2). Objective (2-1) represents the 

minimizing total non-value-added transportation time of the flatcars and (2-2) represents 
the total carbon emission of the flatcars. Objective (2-1) contains three parts. It includes 
the no-load travel time  and total waiting time .The formula of  is shown in (2-
3). It represents the no-load travel time between two adjacent tasks performed by the 
flatcar. In (2-4),  represents the no-load travel time for the flatcar exiting and returning 
the parking lot. In (2-5),  represents the waiting time of the flatcar arriving earlier than 
the time window. Objective (2-2) contains two parts. Carbon emissions of no-load flatcar 
traveling between two adjacent tasks is show in (2.6). In (2.7),  represents carbon 
emissions of load driving in tasks. 

Constraint (2-8), (2-9) ensure that each flatcar only has one first and final task and 
(2.18) ensures that each task is performed by one flatcar. Constraint on the start time 
between the adjacent tasks is done by (2-10). Constraint (2-11) represents the task time 
window constraint. Constraint (2-12), (2-13) limit the time window of the parking lot. 
Constraint (2-14) ensures the task segment weight and flatcar load-bearing capacity. 
Constraint (2-15), (2-16) put limitation on the number of times a task appears in each 
flatcar. Constraint (2-17) indicates that the adjacent tasks cannot be repeatedly executed. 

3. NSGAⅡ-MOTS Hybrid Optimizing Approach 

The MILP model established in this paper is based on the research of Li Baihe et 
al([6]). The increasing green goal of carbon emission determines that we need to solve 
the multi-objective optimization problem. This paper designs a multi-objective tabu 
search (MOTS) algorithm, and proposes a hybrid optimization algorithm combining 
NSGA-Ⅱ and MOTS. In NSGAⅡ-MOTS algorithm, NSGA-Ⅱ is used to obtain a better 
solution set, and the optimal solution is input into MOTS algorithm to continue solving.  

The chromosome is designed as two one-dimensional arrays based on positive 
integers, which respectively represent the task sequence and the flatcar sequence. During 
decoding, each task is assigned to corresponding flatcar according to chromosome 
coding, and the task order on the flatcar means the execution order. 

We propose two methods of constructing neighborhood solutions: (1) Local search 
for task sequence. The neighborhood solution is obtained by exchanging the position of 
two tasks, which are performed by a randomly selected flatcar. (2) Local search for 
flatcar sequence. A task is randomly selected, and the flatcar corresponding to it is 
replaced with a newly generated flatcar that meet the weight requirement. In each 
iteration, when generating neighborhood solutions, the above two methods are selected 
according to the fixed ratio.  

 
Figure 3. Chromosome coding. 

In our hybrid optimizing approach, NSGA-II is used to get a high-quality solution, 
and then MOTS is used to continue the search. The specific steps are shown in Figure 4. 

Step1: Input the information of the task, flatcar, and coordinates of yards, workshop, 
platform and intersection. Initialization parameters: population size ( ), single-
point crossover rate ( ), exchange mutation rate ( ), elitism preservation rate ( ), 
maximum iterations, unimproved times and iteration times. 
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Step2: Randomly generate the task sequence, once for each task, and the flatcar 
meeting the weight constraint is generated randomly for each task. The population size 
is popsize, and these random individuals formed the initial population. 

Step4: Calculate non-dominated rank of each individual in the population. 
Step5: Calculate crowding distance of each individual in the population. 

 
Figure 4. Hybrid optimization algorithm flow. 

Step6: If the population number , proceed to step 7; otherwise, go 
directly to step 11.  

Step7: If the times meet the termination criteria, go directly to step 12. If not, proceed 
to step 8. 

Step8: Use roulette method to select individuals in the parents. 
Step9: Use single-point crossover to generate  offspring, and use 

exchange mutation to generate   offspring, and then use elitism preservation 
strategy to generate  offspring, where . 

Step10: The offspring and parent are mixed into the candidate population. The 
iteration time is increased by 1, and go back to step 4. 

Step11: The candidate population is sorted in ascending order of non-dominant rank, 
and descending order of crowding distance. Take the first  in order to substitute 
the parent population. 

Start

Input Task, Flatcar, 
Workplaces, Intersections 

Randomly generate initial 
task sequence

Generate flatcar sequence 
based on weight constraints

Calculate non-dominated 
rank

Calculate crowding distance

Meet 
termination 

criteria?

Select individuals in parent generation 
using roulette 

Single-point 
crossover

Exchange 
mutation

Elitism 
preservation

Create the next generation colony

Select the optimal solution 
from the Pareto set

Initialize tabu search 
algorithm parameters

Meet 
termination 

criteria?

Generate neighborhood 
solutions 

Calculate evaluation function 
of neighborhood individuals

Calculate non-dominated 
rank of neighborhood 

solution set

Add neighborhood 
individuals to the candidate  

solution set

Meet
amnesty

rule?

Select the optimal solution 
from Pareto set

Update the current optimal 
solution

Update tabu list

End

Select amnesty as 
the optimal 

solution

Get the optimal 
pareto solution set

Add Son  and parent generations to 
candidate solution set, N=2*Size

N=Size ? Rank candidate solution set 

Take the first Size in order;
copy to Parent Population

Y

N

N

Y

Y

N

Y

N
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Step12: Use NSGA-Ⅱ to find the optimal solution as the initial solution of MOTS 
algorithm (current iterative solution), and initialize the parameters: neighborhood space 

, tabu length, maximum iteration times, and iteration times. 
Step13: If the times meet the termination criteria, the algorithm solution ends. If not, 

proceed to step 14. 
Step14: Use the current iterative solution to generate  neighborhood solutions, 

and calculate the non-dominated rank and the evaluation function of each individual. 
Step15: If the solution meets amnesty rule, update the current optimal solution with 

amnesty. 
Step16: Update the tabu list, if the current solution is feasible, then update the 

optimal solution; otherwise, do not update. The iteration time is increased by 1 and go 
back to step13. 

4. Numerical experiments and discussions 

4.1. Algorithm comparison analysis 

This section describes computational results to compare three optimization 
algorithms which are implemented in Java. The computer running the test is configured 
with Intel (R) -64 Core (TM) I5-7200U CPU @ 2.50GHz 2.71GHz.  

The test datasets are encoded as , where  is the number of tasks, and  is 
the number of flatcars. By setting different combinations of task numbers 
(T=10,20,30,40,50) and flatcar numbers (F=2,3,4,5,6,7,8), the solving effects of three 
different algorithms are compared. The main parameter settings of NSGA-Ⅱ and MOTS 
are shown in the Table 3. The result is the average value of 5 times for each test. 

Table 3. Default parameter settings of the NSGA-Ⅱ. 

Parameters Values 
Population size 100 

Maximal generation/iteration NSGA-Ⅱ (300), MOTS (300), NSGAⅡ-MOTS (50+300) 
Crossover / Mutation rate 0.4/0.4 
Retain Elite probability 0.2 

Neighborhood space size 500 
Tabu length 300 

The test results are shown in Table 4, where  represents the total non-value-added 
transportation time of the flatcars (unit: min), and  represents the total carbon emission 
of the flatcars (unit: g). The results will be analyzed in next section. 

Table 4. Results about different tasks and flatcars. 

  
NSGA-Ⅱ has a strong global search ability, but it is easy to fall into a local solution. 

The tabu search algorithm relies on the tabu list, and has the ability to jump out of local 
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solutions. Meanwhile, different methods of constructing neighborhood also increase the 
diversity of neighborhood space, which has a good solution effect and a fast convergence 
speed. 

The comparison of results in Table 4 can draw the following conclusions: 
a) With the increasing of problem size, MOTS can obtain a better Pareto solution 

set than NSGA-II in the same iteration times;  
b) When the scale is small (T= 10,20), both MOTS and NSGAⅡ-MOTS can obtain 

the better results. When the scale is large, such as T = 40, the solution effect of the hybrid 
algorithm is significantly better than NSGA-II. 

From the perspective of algorithm convergence, further compare the solution quality 
of the three algorithms. Taking  as examples, the relationship between the two 
objective function values and the iteration times is shown in Figure 5,6. It is clearly 
observed that NSGA-II has not converged in the set iteration times for 20 tasks, while 
for MOTS both two targets have converged at the 30th generation, and the hybrid 
algorithm has converged at the 60th generation. Within the iteration times set by the 
algorithm, both MOTS and hybrid algorithms can obtain better objective function values. 

 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 

 
 
 

 
 

 

Figure 6. Convergence analysis of objective . 

4.2. Real-word case study of emission reduction benefits 

Taking the actual scheduling task of a shipyard in Shanghai as an example, to verify 
the feasibility and effectiveness of the MILP model and hybrid algorithm proposed in 
this paper. The number of tasks is 40.We chose  dataset, while the detail of 
NO.7,8,9,13,14,15 flatcars is in Table 5. Randomly chosen one in Pareto set for example, 
the scheduling results is shown in Table 6,7. 

Table 5. Task list for T20 and Flatcars information. 

 

 .5. Convergence analysis of objective Figure 
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Table 6. Obtained task sequence results for each flatcar. 

   
Table 7. Obtained route planning for flatcar NO.4. 

   
According to the latest EU emission standards in early 2019, heavy cargo trucks are 

required to reduce CO2 emissions by 30% by 2030. Calculated based on the average 
workload of 2km per time, heavy fuel truck fuel consumption of 25.9L / 100km, and fuel 
emission factor of 2.621kg / L, the comparison of the optimal scheduling emission 
obtained in this paper and standard emission is shown in Table 8. We can conclude that 
the optimization of carbon emissions can meet the latest emission reduction standards. 

Table 8. Carbon emissions comparison. 

Standard Emission(g) Generated Emission(g) Decrease Percentage 
8146.07 3159.04 61.22% 

5. Conclusion 

In order to actively respond to the call of green shipbuilding in China and achieve a 
high efficiency and low energy consumption transportation scheduling mode, we 
propose a bi-objective mathematical model for OVOC transportation scheduling 
problem, and design a NSGAⅡ-MOTS algorithm. The NSGA-Ⅱ and NSGAⅡ-MOTS 
have different advantages according to the numerical results. The NSGA-Ⅱ is 
competitive in computation time and can find Pareto solution for small-scale instances. 
However, the NSGAⅡ-MOTS is absolutely competitive in terms of solution effect and 
convergence speed, and is suitable for optimizing large-scale and complex instances. The 
non-value-added time of 6 flatcars is reduced to 8h/day and carbon emission reduction 
benefits are obvious with the decrease percentage of 61.22%.  

Based on the developed methods, the following practical features can be further 
studied to improve the applicability of the algorithms. (1) Two synchronizing flatcars 
transport one overweight segment can be considered, the corresponding coding method 
and time update mechanism are adjusted accordingly. (2) The road interference exists 
during the transportation of flatcars. Some roads can only travel with one flatcar at the 
same time. (3) Advanced computing technologies, e.g. cloud computing, can be used to 
improve the computation speed. (4) In order to highlight the application value of 
transdisciplinary engineering, we can consider introducing knowledge-based scheduling 
method, which can store knowledge in different fields to assist in scheduling decisions.  
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